Search studies using keywords
Identifier | Name | Phenotype(s) | Total p-values | Related citations | Add data sets to Browser | Related data |
---|---|---|---|---|---|---|
HGVST4916 |
![]()
We conducted genome-wide association studies (GWAS) of relative intake from the macronutrients fat, protein, carbohydrates, and sugar in over 235,000 individuals of European ancestries. We identified 21 unique, approximately independent lead SNPs. Fourteen lead SNPs are uniquely associated with one macronutrient at genome-wide significance (P < 5 × 10-8), while five of the 21 lead SNPs reach suggestive significance (P < 1 × 10-5) for at least one other macronutrient. While the phenotypes are genetically correlated, each phenotype carries a partially unique genetic architecture. Relative protein intake exhibits the strongest relationships with poor health, including positive genetic associations with obesity, type 2 diabetes, and heart disease (rg ≈ 0.15-0.5). In contrast, relative carbohydrate and sugar intake have negative genetic correlations with waist circumference, waist-hip ratio, and neighborhood deprivation (|rg| ≈ 0.1-0.3) and positive genetic correlations with physical activity (rg ≈ 0.1 and 0.2). Relative fat intake has no consistent pattern of genetic correlations with poor health but has a negative genetic correlation with educational attainment (rg ≈-0.1). Although our analyses do not allow us to draw causal conclusions, we find no evidence of negative health consequences associated with relative carbohydrate, sugar, or fat intake. However, our results are consistent with the hypothesis that relative protein intake plays a role in the etiology of metabolic dysfunction.
|
|
21 | |||
HGVST4901 |
![]()
Attention-Deficit/Hyperactivity Disorder (ADHD) is a childhood psychiatric disorder often comorbid with disruptive behavior disorders (DBDs). Here, we report a GWAS meta-analysis of ADHD comorbid with DBDs (ADHD + DBDs) including 3802 cases and 31,305 controls. We identify three genome-wide significant loci on chromosomes 1, 7, and 11. A meta-analysis including a Chinese cohort supports that the locus on chromosome 11 is a strong risk locus for ADHD + DBDs across European and Chinese ancestries (rs7118422, P = 3.15×10-10, OR = 1.17). We find a higher SNP heritability for ADHD + DBDs (h2SNP = 0.34) when compared to ADHD without DBDs (h2SNP = 0.20), high genetic correlations between ADHD + DBDs and aggressive (rg = 0.81) and anti-social behaviors (rg = 0.82), and an increased burden (polygenic score) of variants associated with ADHD and aggression in ADHD + DBDs compared to ADHD without DBDs. Our results suggest an increased load of common risk variants in ADHD + DBDs compared to ADHD without DBDs, which in part can be explained by variants associated with aggressive behavior.
|
|
4 | |||
HGVST4902 |
![]()
C-reactive protein (CRP) is a circulating biomarker indicative of systemic inflammation. We aimed to evaluate genetic associations with CRP levels among non-European-ancestry populations through discovery, fine-mapping and conditional analyses. A total of 30 503 non-European-ancestry participants from 6 studies participating in the Population Architecture using Genomics and Epidemiology study had serum high-sensitivity CRP measurements and ∼200 000 single nucleotide polymorphisms (SNPs) genotyped on the Metabochip. We evaluated the association between each SNP and log-transformed CRP levels using multivariate linear regression, with additive genetic models adjusted for age, sex, the first four principal components of genetic ancestry, and study-specific factors. Differential linkage disequilibrium patterns between race/ethnicity groups were used to fine-map regions associated with CRP levels. Conditional analyses evaluated for multiple independent signals within genetic regions. One hundred and sixty-three unique variants in 12 loci in overall or race/ethnicity-stratified Metabochip-wide scans reached a Bonferroni-corrected P-value <2.5E-7. Three loci have no (HACL1, OLFML2B) or only limited (PLA2G6) previous associations with CRP levels. Six loci had different top hits in race/ethnicity-specific versus overall analyses. Fine-mapping refined the signal in six loci, particularly in HNF1A. Conditional analyses provided evidence for secondary signals in LEPR, IL1RN and HNF1A, and for multiple independent signals in CRP and APOE. We identified novel variants and loci associated with CRP levels, generalized known CRP associations to a multiethnic study population, refined association signals at several loci and found evidence for multiple independent signals at several well-known loci. This study demonstrates the benefit of conducting inclusive genetic association studies in large multiethnic populations.
|
|
17 | |||
HGVST4903 |
![]()
The genetic background of childhood body mass index (BMI), and the extent to which the well-known associations of childhood BMI with adult diseases are explained by shared genetic factors, are largely unknown. We performed a genome-wide association study meta-analysis of BMI in 61,111 children aged between 2 and 10 years. Twenty-five independent loci reached genome-wide significance in the combined discovery and replication analyses. Two of these, located near NEDD4L and SLC45A3, have not previously been reported in relation to either childhood or adult BMI. Positive genetic correlations of childhood BMI with birth weight and adult BMI, waist-to-hip ratio, diastolic blood pressure and type 2 diabetes were detected (Rg ranging from 0.11 to 0.76, P-values <0.002). A negative genetic correlation of childhood BMI with age at menarche was observed. Our results suggest that the biological processes underlying childhood BMI largely, but not completely, overlap with those underlying adult BMI. The well-known observational associations of BMI in childhood with cardio-metabolic diseases in adulthood may reflect partial genetic overlap, but in light of previous evidence, it is also likely that they are explained through phenotypic continuity of BMI from childhood into adulthood.
|
|
47 | |||
HGVST4904 |
![]()
Aromatase inhibitors (AIs) reduce breast cancer recurrence and prolong survival, but up to 30% of patients exhibit recurrence. Using a genome-wide association study of patients entered on MA.27, a phase III randomized trial of anastrozole versus exemestane, we identified a single nucleotide polymorphism (SNP) in CUB And Sushi multiple domains 1 (CSMD1) associated with breast cancer-free interval, with the variant allele associated with fewer distant recurrences. Mechanistically, CSMD1 regulates CYP19 expression in an SNP- and drug-dependent fashion, and this regulation is different among 3 AIs: anastrozole, exemestane, and letrozole. Overexpression of CSMD1 sensitized AI-resistant cells to anastrozole but not to the other 2 AIs. The SNP in CSMD1 that was associated with increased CSMD1 and CYP19 expression levels increased anastrozole sensitivity, but not letrozole or exemestane sensitivity. Anastrozole degrades estrogen receptor α (ERα), especially in the presence of estradiol (E2). ER+ breast cancer organoids and AI- or fulvestrant-resistant breast cancer cells were more sensitive to anastrozole plus E2 than to AI alone. Our findings suggest that the CSMD1 SNP might help to predict AI response, and anastrozole plus E2 serves as a potential new therapeutic strategy for patients with AI- or fulvestrant-resistant breast cancers.
|
|
5 | |||
HGVST4905 |
![]()
OBJECTIVES: Chronic widespread musculoskeletal pain (CWP) is a characteristic symptom of fibromyalgia, which has been shown to be associated with an altered gut microbiome. Microbiome studies to date have not examined the milder CWP phenotype specifically nor have they explored the role of raised BMI. The aim of this study was to investigate whether the microbiome is abnormal in CWP. METHODS: CWP was assessed using a standardized screening questionnaire in female volunteers from the TwinsUK cohort including 113 CWP cases and 1623 controls. The stool microbiome was characterized using 16S rRNA amplicon sequencing and amplicon sequence variants, and associations with CWP examined using linear mixed-effects models adjusting for BMI, age, diet, family relatedness and technical factors. RESULTS: Alpha diversity was significantly lower in CWP cases than controls (Mann-Whitney test, P-values 2.3e-04 and 1.2e-02, for Shannon and Simpson indices respectively). The species Coprococcus comes was significantly depleted in CWP cases (Padj = 3.04e-03). A genome-wide association study (GWAS) performed for C. comes in TwinsUK followed by meta-analysis with three Dutch cohorts (total n = 3521) resulted in nine suggestive regions, with the most convincing on chromosome 4 near the TRAM1L1 gene (rs76957229, P = 7.4e-8). A Mendelian randomization study based on the results of the GWAS did not support a causal role for C. comes on the development of CWP. CONCLUSIONS: We have demonstrated reduced diversity in the microbiome in CWP, indicating an involvement of the gut microbiota in CWP; prospectively the microbiome may offer therapeutic opportunities for this condition.
|
|
24 | |||
HGVST4906 |
![]()
BACKGROUND: Cetuximab, an EGFR inhibitor used to treat multiple cancer types, including colon cancer, causes severe skin toxicity in 5%-20% of patients, leading to decreased quality of life and treatment delays. Our understanding of which patients have an increased risk of severe toxicities is limited. We conducted a genome-wide association study to identify germline variants predictive of cetuximab-induced severe skin toxicity. METHODS: Our study included 1,209 patients with stage III colon cancer randomized to receive cetuximab plus 5-fluorouracil and oxaliplatin as part of the NCCTG N0147 (Alliance) clinical trial. Skin toxicity outcomes were collected using the Common Toxicity Criteria for Adverse Events version 3.0. We performed genotyping, evaluating approximately 10 million genetic variants. We used logistic regression to evaluate the association of each genetic variant and severe (grade ≥ 3) skin toxicity, adjusting for age, sex, and genetic ancestry. Genome-wide significance was defined as P < 5 × 10-8. RESULTS: Participants were predominantly middle-aged white men; 20% (n = 243) experienced severe skin toxicity. Two genetic variants in the retinoic acid receptor alpha (RARA) gene were significantly associated with severe skin toxicity [OR, 3.93; 95% confidence interval (CI), 2.47-6.25; P < 7.8 × 10-9]. Functional annotations indicate these variants are in the RARA promoter. Additional significantly associated variants were identified in chromosome 2 intergenic regions. CONCLUSIONS: Identified variants could represent a potential target for risk stratification of patients with colon cancer receiving cetuximab. IMPACT: Retinoids have shown promise in the treatment of cetuximab-induced skin toxicity, so follow-up work could evaluate whether individuals with the RARA variant would benefit from retinoid therapy.
|
|
2 | |||
HGVST4907 |
![]()
Background: Clostridioides difficile is a major cause of healthcare-associated and community-acquired diarrhea. Host genetic susceptibility to Clostridioides difficile infection has not been studied on a large-scale. Methods: A total of 1,160 Clostridioides difficile infection cases and 15,304 controls were identified by applying the eMERGE Clostridioides difficile infection algorithm to electronic health record data. A genome-wide association study was performed using a linear mixed model, adjusted for significant covariates in the full dataset and the antibiotic subgroup. Colocalization and MetaXcan were performed to identify potential target genes in Clostridioides difficile infection - relevant tissue types. Results: No significant genome-wide association was found in the meta-analyses of the full Clostridioides difficile infection dataset. One genome-wide significant variant, rs114751021, was identified (OR = 2.42; 95%CI = 1.84-3.11; p=4.50 x 10-8) at the major histocompatibility complex region associated with Clostridioides difficile infection in the antibiotic group. Colocalization and MetaXcan identified MICA, C4A/C4B, and NOTCH4 as potential target genes. Down-regulation of MICA, upregulation of C4A and NOTCH4 was associated with a higher risk for Clostridioides difficile infection. Conclusions: Leveraging the EHR and genetic data, genome-wide association, and fine-mapping techniques, this study identified variants and genes associated with Clostridioides difficile infection, provided insights into host immune mechanisms, and described the potential for novel treatment strategies for Clostridioides difficile infection. Future replication and functional validation are needed.
|
|
48 | |||
HGVST4908 |
![]()
Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation.
|
|
16,869 | |||
HGVST4892 |
![]()
BACKGROUND: Blood insulin level is an important risk factor for numerous disorders. Individual blood insulin level is known to be substantially influenced by genetic factors. Several genetic association studies identified a number of genetic variants for blood insulin level, but none of them was from a sex-stratified population. OBJECTIVE: This study aimed to identify male- and female-specific genetic variants related to blood insulin level and to evaluate the causal relationship between blood insulin level and polycystic ovary syndrome (PCOS) that is likely caused by high insulin in Korean women. METHODS: A genome-wide association study was conducted to identify genetic variants influencing blood insulin level in males (N = 4183) and females (N = 4659) in the Korean population. Two-sample Mendelian randomization (MR) analysis was used to investigate the causal effects of the insulin variants identified from GWAS on PCOS in Korean women. Genetic association data for PCOS were obtained from a PCOS study cohort (946 cases, 976 controls) in Ewha Womans University Hospital. RESULTS: GWAS linear regression analysis identified 13 female-specific SNPs and 13 male-specific SNPs showing suggestive associations (P < 10-5) with blood insulin level. The results from two-sample MR analysis using the GWAS variants for PCOS indicated that genetically determined insulin level was not associated with the risk of PCOS in Korean women. CONCLUSION: This study identified sex-specific genetic variants showing associations with insulin for the first time in East Asian populations. In addition, MR analysis using variants discovered from Korean women revealed that genetically determined high level of insulin is not the cause of PCOS.
|
|
32 | |||
HGVST4893 |
![]()
BACKGROUND: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally. COPD patients with cachexia or weight loss have increased risk of death independent of body mass index (BMI) and lung function. We tested the hypothesis genetic variation is associated with weight loss in COPD using a genome-wide association study approach. METHODS: Participants with COPD (N = 4308) from three studies (COPDGene, ECLIPSE, and SPIROMICS) were analysed. Discovery analyses were performed in COPDGene with replication in SPIROMICS and ECLIPSE. In COPDGene, weight loss was defined as self-reported unintentional weight loss > 5% in the past year or low BMI (BMI < 20 kg/m2 ). In ECLIPSE and SPIROMICS, weight loss was calculated using available longitudinal visits. Stratified analyses were performed among African American (AA) and Non-Hispanic White (NHW) participants with COPD. Single variant and gene-based analyses were performed adjusting for confounders. Fine mapping was performed using a Bayesian approach integrating genetic association results with linkage disequilibrium and functional annotation. Significant gene networks were identified by integrating genetic regions associated with weight loss with skeletal muscle protein-protein interaction (PPI) data. RESULTS: At the single variant level, only the rs35368512 variant, intergenic to GRXCR1 and LINC02383, was associated with weight loss (odds ratio = 3.6, 95% confidence interval = 2.3-5.6, P = 3.2 × 10-8 ) among AA COPD participants in COPDGene. At the gene level in COPDGene, EFNA2 and BAIAP2 were significantly associated with weight loss in AA and NHW COPD participants, respectively. The EFNA2 association replicated among AA from SPIROMICS (P = 0.0014), whereas the BAIAP2 association replicated in NHW from ECLIPSE (P = 0.025). The EFNA2 gene encodes the membrane-bound protein ephrin-A2 involved in the regulation of developmental processes and adult tissue homeostasis such as skeletal muscle. The BAIAP2 gene encodes the insulin-responsive protein of mass 53 kD (IRSp53), a negative regulator of myogenic differentiation. Integration of the gene-based findings participants with PPI data revealed networks of genes involved in pathways such as Rho and synapse signalling. CONCLUSIONS: The EFNA2 and BAIAP2 genes were significantly associated with weight loss in COPD participants. Collectively, the integrative network analyses indicated genetic variation associated with weight loss in COPD may influence skeletal muscle regeneration and tissue remodelling.
|
|
9 | |||
HGVST4894 |
![]()
Birth weight (BW) is an important predictor of newborn survival and health and has associations with many adult health outcomes, including cardiometabolic disorders, autoimmune diseases and mental health. On average, twins have a lower BW than singletons as a result of a different pattern of fetal growth and shorter gestational duration. Therefore, investigations into the genetics of BW often exclude data from twins, leading to a reduction in sample size and remaining ambiguities concerning the genetic contribution to BW in twins. In this study, we carried out a genome-wide association meta-analysis of BW in 42 212 twin individuals and found a positive correlation of beta values (Pearson's r = 0.66, 95% confidence interval [CI]: 0.47-0.77) with 150 previously reported genome-wide significant variants for singleton BW. We identified strong positive genetic correlations between BW in twins and numerous anthropometric traits, most notably with BW in singletons (genetic correlation [rg] = 0.92, 95% CI: 0.66-1.18). Genetic correlations of BW in twins with a series of health-related traits closely resembled those previously observed for BW in singletons. Polygenic scores constructed from a genome-wide association study on BW in the UK Biobank demonstrated strong predictive power in a target sample of Dutch twins and singletons. Together, our results indicate that a similar genetic architecture underlies BW in twins and singletons and that future genome-wide studies might benefit from including data from large twin registers.
|
|
2 | |||
HGVST4895 |
![]()
Interleukin 6 (IL-6) is a multifunctional cytokine with both pro- and anti-inflammatory properties with a heritability estimate of up to 61%. The circulating levels of IL-6 in blood have been associated with an increased risk of complex disease pathogenesis. We conducted a two-staged, discovery and replication meta genome-wide association study (GWAS) of circulating serum IL-6 levels comprising up to 67 428 (ndiscovery = 52 654 and nreplication = 14 774) individuals of European ancestry. The inverse variance fixed effects based discovery meta-analysis, followed by replication led to the identification of two independent loci, IL1F10/IL1RN rs6734238 on chromosome (Chr) 2q14, (Pcombined = 1.8 × 10-11), HLA-DRB1/DRB5 rs660895 on Chr6p21 (Pcombined = 1.5 × 10-10) in the combined meta-analyses of all samples. We also replicated the IL6R rs4537545 locus on Chr1q21 (Pcombined = 1.2 × 10-122). Our study identifies novel loci for circulating IL-6 levels uncovering new immunological and inflammatory pathways that may influence IL-6 pathobiology.
|
|
9 | |||
HGVST4896 |
![]()
BACKGROUND: Eighteen known susceptibility loci for IgAN account for only a small proportion of IgAN risk. METHODS: Genome-wide meta-analysis was performed in 2628 patients and 11,563 controls of Chinese ancestry, and a replication analysis was conducted in 6879 patients and 9019 controls of Chinese descent and 1039 patients and 1289 controls of European ancestry. The data were used to assess the association of susceptibility loci with clinical phenotypes for IgAN, and to investigate genetic heterogeneity of IgAN susceptibility between the two populations. Imputation-based analysis of the MHC/HLA region extended the scrutiny. RESULTS: Identification of three novel loci (rs6427389 on 1q23.1 [P=8.18×10-9, OR=1.132], rs6942325 on 6p25.3 [P=1.62×10-11, OR=1.165], and rs2240335 on 1p36.13 [P=5.10×10-9, OR=1.114]), implicates FCRL3, DUSP22.IRF4, and PADI4 as susceptibility genes for IgAN. Rs2240335 is associated with the expression level of PADI4, and rs6427389 is in high linkage disequilibrium with rs11264799, which showed a strong expression quantitative trail loci effect on FCRL3. Of the 24 confirmed risk SNPs, six showed significant heterogeneity of genetic effects and DEFA showed clear evidence of allelic heterogeneity between the populations. Imputation-based analysis of the MHC region revealed significant associations at three HLA polymorphisms (HLA allele DPB1*02, AA_DRB1_140_32657458_T, and AA_DQA1_34_32717152) and two SNPs (rs9275464 and rs2295119). CONCLUSIONS: A meta-analysis of GWAS data revealed three novel genetic risk loci for IgAN, and three HLA polymorphisms and two SNPs within the MHC region, and demonstrated the genetic heterogeneity of seven loci out of 24 confirmed risk SNPs. These variants may explain susceptibility differences between Chinese and European populations.
|
|
12 | |||
HGVST4897 |
![]()
Walking is a simple form of exercise, widely promoted for its health benefits. Self-reported walking pace has been associated with a range of cardiorespiratory and cancer outcomes, and is a strong predictor of mortality. Here we perform a genome-wide association study of self-reported walking pace in 450,967 European ancestry UK Biobank participants. We identify 70 independent associated loci (P < 5 × 10-8), 11 of which are novel. We estimate the SNP-based heritability as 13.2% (s.e. = 0.21%), reducing to 8.9% (s.e. = 0.17%) with adjustment for body mass index. Significant genetic correlations are observed with cardiometabolic, respiratory and psychiatric traits, educational attainment and all-cause mortality. Mendelian randomization analyses suggest a potential causal link of increasing walking pace with a lower cardiometabolic risk profile. Given its low heritability and simple measurement, these findings suggest that self-reported walking pace is a pragmatic target for interventions aiming for general benefits on health.
|
|
75 | |||
HGVST4898 |
![]()
The human genetic factors that affect resistance to infectious disease are poorly understood. Here we report a genome-wide association study in 17,000 severe malaria cases and population controls from 11 countries, informed by sequencing of family trios and by direct typing of candidate loci in an additional 15,000 samples. We identify five replicable associations with genome-wide levels of evidence including a newly implicated variant on chromosome 6. Jointly, these variants account for around one-tenth of the heritability of severe malaria, which we estimate as ~23% using genome-wide genotypes. We interrogate available functional data and discover an erythroid-specific transcription start site underlying the known association in ATP2B4, but are unable to identify a likely causal mechanism at the chromosome 6 locus. Previously reported HLA associations do not replicate in these samples. This large dataset will provide a foundation for further research on thegenetic determinants of malaria resistance in diverse populations.
|
|
95 | |||
HGVST4899 |
![]()
Signalling lipids of the N-acyl ethanolamine (NAE) and ceramide (CER) classes have emerged as potential biomarkers of cardiovascular disease (CVD). We sought to establish the heritability of plasma NAEs (including the endocannabinoid anandamide) and CERs, to identify common DNA variants influencing the circulating concentrations of the heritable lipids, and assess causality of these lipids in CVD using 2-sample Mendelian randomization (2SMR). Nine NAEs and 16 CERs were analyzed in plasma samples from 999 members of 196 British Caucasian families, using targeted ultra-performance liquid chromatography with tandem mass spectrometry. All lipids were significantly heritable (h2 = 36-62%). A missense variant (rs324420) in the gene encoding the enzyme fatty acid amide hydrolase (FAAH), which degrades NAEs, associated at genome-wide association study (GWAS) significance (P < 5 × 10-8) with four NAEs (DHEA, PEA, LEA and VEA). For CERs, rs680379 in the SPTLC3 gene, which encodes a subunit of the rate-limiting enzyme in CER biosynthesis, associated with a range of species (e.g. CER[N(24)S(19)]; P = 4.82 × 10-27). We observed three novel associations between SNPs at the CD83, SGPP1 and DEGS1 loci, and plasma CER traits (P < 5 × 10-8). 2SMR in the CARDIoGRAMplusC4D cohorts (60 801 cases; 123 504 controls) and in the DIAGRAM cohort (26 488 cases; 83 964 controls), using the genetic instruments from our family-based GWAS, did not reveal association between genetically determined differences in CER levels and CVD or diabetes. Two of the novel GWAS loci, SGPP1 and DEGS1, suggested a casual association between CERs and a range of haematological phenotypes, through 2SMR in the UK Biobank, INTERVAL and UKBiLEVE cohorts (n = 110 000-350 000).
|
|
18 | |||
HGVST4900 |
![]()
Vitamin D deficiency is a candidate risk factor for a range of adverse health outcomes. In a genome-wide association study of 25 hydroxyvitamin D (25OHD) concentration in 417,580 Europeans we identify 143 independent loci in 112 1-Mb regions, providing insights into the physiology of vitamin D and implicating genes involved in lipid and lipoprotein metabolism, dermal tissue properties, and the sulphonation and glucuronidation of 25OHD. Mendelian randomization models find no robust evidence that 25OHD concentration has causal effects on candidate phenotypes (e.g. BMI, psychiatric disorders), but many phenotypes have (direct or indirect) causal effects on 25OHD concentration, clarifying the epidemiological relationship between 25OHD status and the health outcomes examined in this study.
|
|
324 | |||
HGVST4884 |
![]()
Glycosuria is a condition where glucose is detected in urine at higher concentrations than normal (i.e. not detectable). Glycosuria at some point during pregnancy has an estimated prevalence of 50% and is associated with adverse outcomes in both mothers and offspring. Little is currently known about the genetic contribution to this trait or the extent to which it overlaps with other seemingly related traits, e.g. diabetes. We performed a genome-wide association study (GWAS) for self-reported glycosuria in pregnant mothers from the Avon Longitudinal Study of Parents and Children (cases/controls = 1249/5140). We identified two loci, one of which (lead SNP = rs13337037; chromosome 16; odds ratio of glycosuria per effect allele: 1.42; 95% CI: 1.30, 1.56; P = 1.97 × 10-13) was then validated using an obstetric measure of glycosuria measured in the same cohort (227/6639). We performed a secondary GWAS in the 1986 Northern Finland Birth Cohort (NFBC1986; 747/2991) using midwife-reported glycosuria and offspring genotype as a proxy for maternal genotype. The combined results revealed evidence for a consistent effect on glycosuria at the chromosome 16 locus. In follow-up analyses, we saw little evidence of shared genetic underpinnings with the exception of urinary albumin-to-creatinine ratio (Rg = 0.64; SE = 0.22; P = 0.0042), a biomarker of kidney disease. In conclusion, we identified a genetic association with self-reported glycosuria during pregnancy, with the lead SNP located 15kB upstream of SLC5A2, a target of antidiabetic drugs. The lack of strong genetic correlation with seemingly related traits such as type 2 diabetes suggests different genetic risk factors exist for glycosuria during pregnancy.
|
|
7 | |||
HGVST4885 |
![]()
Immune-related etiologic pathways to influence invasive breast cancer risk may interact with lifestyle factors, but the interrelated molecular genetic pathways are incompletely characterized. We used data from the Women's Health Initiative Database for Genotypes and Phenotypes Study including 16,088 postmenopausal women, a population highly susceptible to inflammation, obesity, and increased risk for breast cancer. With 21,784,812 common autosomal single-nucleotide polymorphisms (SNP), we conducted a genome-wide association (GWA) gene-environment interaction (G × E) analysis in six independent GWA Studies for proinflammatory cytokines [IL6 and C-reactive protein (CRP)] and their gene-lifestyle interactions. Subsequently, we tested for the association of the GWA SNPs with breast cancer risk. In women overall and stratified by obesity status (body mass index, waist circumference, and waist-to-hip ratio) and obesity-related lifestyle factors (exercise and high-fat diet), 88 GWA SNPs in 10 loci were associated with proinflammatory cytokines: 3 associated with IL6 (1 index SNP in MAPK1 and 1 independent SNP in DEC1); 85 with CRP (3 index SNPs in CRPP1, CRP, RP11-419N10.5, HNF1A-AS1, HNF1A, and C1q2orf43; and two independent SNPs in APOE and APOC1). Of those, 27 in HNF1A-AS1, HNF1A, and C1q2orf43 displayed significantly increased risk for breast cancer. We found a number of novel top markers for CRP and IL6, which interacted with obesity factors. A substantial proportion of those SNPs' susceptibility influenced breast cancer risk. Our findings may contribute to better understanding of genetic associations between pro-inflammation and cancer and suggest intervention strategies for women who carry the risk genotypes, reducing breast cancer risk. PREVENTION RELEVANCE: The top GWA-SNPs associated with pro-inflammatory biomarkers have implications for breast carcinogenesis by interacting with obesity factors. Our findings may suggest interventions for women who carry the inflammatory-risk genotypes to reduce breast cancer risk.
|
|
17 |