Search studies using keywords
Identifier | Name | Phenotype(s) | Total p-values | Related citations | Add data sets to Browser | Related data |
---|---|---|---|---|---|---|
HGVST3454 |
![]()
Although, for decades, increased serum bilirubin concentrations were considered a threatening sign of underlying liver disease and had been associated with neonatal jaundice, data from recent years show that bilirubin is a powerful antioxidant and suggest that slightly increased serum bilirubin concentrations are protective against oxidative stress-related diseases, such as cardiovascular diseases. Therefore, a better understanding of the gene-diet interactions in determining serum bilirubin concentrations is needed. None of the previous genome-wide association studies (GWAS) on bilirubin concentrations has been stratified by sex. Therefore, considering the increasing interest in incorporating the gender perspective into nutritional genomics, our main aim was to carry out a GWAS on total serum bilirubin concentrations in a Mediterranean population with metabolic syndrome, stratified by sex. Our secondary aim was to explore, as a pilot study, the presence of gene-diet interactions at the GWAS level. We included 430 participants (188 men and 242 women, aged 55⁻75 years, and with metabolic syndrome) in the PREDIMED Plus-Valencia study. Global and sex-specific GWAS were undertaken to analyze associations and gene-diet interaction on total serum bilirubin. Adherence (low and high) to the Mediterranean diet (MedDiet) was analyzed as the dietary modulator. In the GWAS, we detected more than 55 SNPs associated with serum bilirubin at p < 5 × 10-8 (GWAS level). The top-ranked were four SNPs (rs4148325 (p = 9.25 × 10-24), rs4148324 (p = 9.48 × 10-24), rs6742078 (p = 1.29 × 10-23), rs887829 (p = 1.39 × 10-23), and the rs4148324 (p = 9.48 × 10-24)) in the UGT1A1 (UDP glucuronosyltransferase family 1 member A1) gene, which replicated previous findings revealing the UGT1A1 as the major locus. In the sex-specific GWAS, the top-ranked SNPs at the GWAS level were similar in men and women (the lead SNP was the rs4148324-UGT1A1 in both men (p = 4.77 × 10-11) and women (p = 2.15 × 10-14), which shows homogeneous genetic results for the major locus. There was more sex-specific heterogeneity for other minor genes associated at the suggestive level of GWAS significance (p < 1 × 10-5). We did not detect any gene-MedDiet interaction at p < 1 × 10-5 for the major genetic locus, but we detected some gene-MedDiet interactions with other genes at p < 1 × 10-5, and even at the GWAS level for the IL17B gene (p = 3.14 × 10-8). These interaction results, however, should be interpreted with caution due to our small sample size. In conclusion, our study provides new data, with a gender perspective, on genes associated with total serum bilirubin concentrations in men and women, and suggests possible additional modulations by adherence to MedDiet.
|
|
64 | |||
HGVST3437 |
![]()
Polycystic ovary syndrome (PCOS) is a disorder characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology. Affected women frequently have metabolic disturbances including insulin resistance and dysregulation of glucose homeostasis. PCOS is diagnosed with two different sets of diagnostic criteria, resulting in a phenotypic spectrum of PCOS cases. The genetic similarities between cases diagnosed based on the two criteria have been largely unknown. Previous studies in Chinese and European subjects have identified 16 loci associated with risk of PCOS. We report a fixed-effect, inverse-weighted-variance meta-analysis from 10,074 PCOS cases and 103,164 controls of European ancestry and characterisation of PCOS related traits. We identified 3 novel loci (near PLGRKT, ZBTB16 and MAPRE1), and provide replication of 11 previously reported loci. Only one locus differed significantly in its association by diagnostic criteria; otherwise the genetic architecture was similar between PCOS diagnosed by self-report and PCOS diagnosed by NIH or non-NIH Rotterdam criteria across common variants at 13 loci. Identified variants were associated with hyperandrogenism, gonadotropin regulation and testosterone levels in affected women. Linkage disequilibrium score regression analysis revealed genetic correlations with obesity, fasting insulin, type 2 diabetes, lipid levels and coronary artery disease, indicating shared genetic architecture between metabolic traits and PCOS. Mendelian randomization analyses suggested variants associated with body mass index, fasting insulin, menopause timing, depression and male-pattern balding play a causal role in PCOS. The data thus demonstrate 3 novel loci associated with PCOS and similar genetic architecture for all diagnostic criteria. The data also provide the first genetic evidence for a male phenotype for PCOS and a causal link to depression, a previously hypothesized comorbid disease. Thus, the genetics provide a comprehensive view of PCOS that encompasses multiple diagnostic criteria, gender, reproductive potential and mental health.
|
|
14 | |||
HGVST3398 |
![]()
C-reactive protein (CRP) is a sensitive biomarker of chronic low-grade inflammation and is associated with multiple complex diseases. The genetic determinants of chronic inflammation remain largely unknown, and the causal role of CRP in several clinical outcomes is debated. We performed two genome-wide association studies (GWASs), on HapMap and 1000 Genomes imputed data, of circulating amounts of CRP by using data from 88 studies comprising 204,402 European individuals. Additionally, we performed in silico functional analyses and Mendelian randomization analyses with several clinical outcomes. The GWAS meta-analyses of CRP revealed 58 distinct genetic loci (p < 5 × 10-8). After adjustment for body mass index in the regression analysis, the associations at all except three loci remained. The lead variants at the distinct loci explained up to 7.0% of the variance in circulating amounts of CRP. We identified 66 gene sets that were organized in two substantially correlated clusters, one mainly composed of immune pathways and the other characterized by metabolic pathways in the liver. Mendelian randomization analyses revealed a causal protective effect of CRP on schizophrenia and a risk-increasing effect on bipolar disorder. Our findings provide further insights into the biology of inflammation and could lead to interventions for treating inflammation and its clinical consequences.
|
|
109 | |||
HGVST3406 |
![]()
BACKGROUND: Serum urea level is a heritable trait, commonly used as a diagnostic marker for kidney function. Genome-wide association studies (GWAS) in East-Asian populations identified a number of genetic loci related to serum urea, however there is a paucity of data for European populations. METHODS: We performed a two-stage meta-analysis of GWASs on serum urea in 13,312 participants, with independent replication in 7,379 participants of European ancestry. RESULTS: We identified 6 genome-wide significant single nucleotide polymorphisms (SNPs) in or near 6 loci, of which 2 were novel (POU2AF1 and ADAMTS9-AS2). Replication of East-Asian and Scottish data provided evidence for an additional 8 loci. SNPs tag regions previously associated with anthropometric traits, serum magnesium, and urinary albumin-to-creatinine ratio, as well as expression quantitative trait loci for genes preferentially expressed in kidney and gastro-intestinal tissues. CONCLUSIONS: Our findings provide insights into the genetic underpinnings of urea metabolism, with potential relevance to kidney function.
|
|
6 | |||
HGVST3410 |
![]()
BACKGROUND: Alcohol dependence and long-term excessive alcohol use may cause liver damage, but only some patients develop cirrhosis. Similarly, high alcohol intake without evident liver disease often but not always produces abnormal enzymatic liver function tests (LFTs), particularly gamma-glutamyl transferase (GGT). We postulate that the factors predisposing to cirrhosis in alcoholics and to liver enzyme abnormality in drinkers are similar, and that biochemical LFTs could therefore be useful as markers of risk of alcoholic liver disease in excessive drinkers. METHODS: Data from participants in twin and twin-family studies on alcohol use and dependence were used to identify 1,003 people who had reported excessive alcohol intake (28 drinks or more per week). A total of 962 of these provided blood for biochemical tests at the same time. Body mass index (BMI) and biomarkers of metabolic syndrome, inflammation, and iron stores were used in logistic regression with abnormality in serum GGT, alanine aminotransferase (ALT), or aspartate aminotransferase (AST) as outcomes. We conducted genome-wide association analyses for GGT, ALT, and AST separately in the group reporting excessive alcohol intake (N = 951) and a low-intake group reporting 14 drinks or fewer per week (N = 8,716), and compared results. RESULTS: Abnormal GGT and ALT among excessive drinkers were associated with higher BMI, triglycerides, insulin, uric acid, C-reactive protein, ferritin, and transferrin saturation; and with lower high-density-lipoprotein cholesterol. Abnormal AST was associated with triglycerides, ferritin, and transferrin saturation. ALT was significantly associated with variants at reported genetic loci for alcoholic liver disease (PNPLA3, rs738409, p = 0.0076; TM6SF2, rs10401969, p = 0.0076; HSD17B13, rs10433879, p = 0.0024). CONCLUSIONS: Known risk factors for alcoholic cirrhosis including obesity and markers of metabolic syndrome, iron overload and inflammation are associated with liver enzyme abnormality in excessive drinkers.
|
|
143 | |||
HGVST3411 |
![]()
BACKGROUND: Fibroblast growth factor 23 (FGF23), a bone-derived hormone that regulates phosphorus and vitamin D metabolism, contributes to the pathogenesis of mineral and bone disorders in CKD and is an emerging cardiovascular risk factor. Central elements of FGF23 regulation remain incompletely understood; genetic variation may help explain interindividual differences. METHODS: We performed a meta-analysis of genome-wide association studies of circulating FGF23 concentrations among 16,624 participants of European ancestry from seven cohort studies, excluding participants with eGFR<30 ml/min per 1.73 m2 to focus on FGF23 under normal conditions. We evaluated the association of single-nucleotide polymorphisms (SNPs) with natural log-transformed FGF23 concentration, adjusted for age, sex, study site, and principal components of ancestry. A second model additionally adjusted for BMI and eGFR. RESULTS: We discovered 154 SNPs from five independent regions associated with FGF23 concentration. The SNP with the strongest association, rs17216707 (P=3.0×10-24), lies upstream of CYP24A1, which encodes the primary catabolic enzyme for 1,25-dihydroxyvitamin D and 25-hydroxyvitamin D. Each additional copy of the T allele at this locus is associated with 5% higher FGF23 concentration. Another locus strongly associated with variations in FGF23 concentration is rs11741640, within RGS14 and upstream of SLC34A1 (a gene involved in renal phosphate transport). Additional adjustment for BMI and eGFR did not materially alter the magnitude of these associations. Another top locus (within ABO, the ABO blood group transferase gene) was no longer statistically significant at the genome-wide level. CONCLUSIONS: Common genetic variants located near genes involved in vitamin D metabolism and renal phosphate transport are associated with differences in circulating FGF23 concentrations.
|
|
19 | |||
HGVST3412 |
![]()
Elevated C-reactive protein (CRP) serves as an independent biomarker for acute and chronic inflammation, and is also associated with metabolic diseases. Genomewide loci regulating CRP level in Indian population, a high-risk group for metabolic illness, is unexplored. Therefore, we aimed to discover common polymorphisms associated with plasma CRP level in 4493 Indians of Indo-European origin using genomewide association study. Genomewide strong associations of two known intronic variants in hepatocyte nuclear factor-1 α gene (HNF1A) were identified among Indian subjects. We also detected prior associations of several variants in/near metabolic and inflammatory process genes: APOC1, LEPR, CRP, HNF4A, IL6R and APOE with modest associations. This study confirms that Indians from Indo-European origin display similar core universal genetic factors for CRP levels.
|
|
5 | |||
HGVST3386 |
![]()
Thyroid hormones (THs) are key regulators of cellular growth, development, and metabolism. The thyroid gland secretes two THs, thyroxine (T4) and triiodothyronine (T3), into the plasma where they are almost all bound reversibly to plasma proteins. Free forms of THs are metabolically active, however, they represent a very small fraction of total TH levels. No genome-wide studies have been performed to date on total TH levels, comprising of protein-bound and free forms of THs. To detect genetic variants associated with total TH levels, we carried out the first GWAS meta-analysis of total T4 levels in 1121 individuals from two Croatian cohorts (Split and Korcula). We also performed GWAS analyses of total T3 levels in 577 individuals and T3/T4 ratio in 571 individuals from the Split cohort. The top association in GWAS meta-analysis of total T4 was detected for an intronic variant within SLC22A9 gene (rs12282281, P = 4.00 × 10-7). Within the same region, a genome-wide significant variant (rs11822642, P = 2.50 × 10-8) for the T3/T4 ratio was identified. SLC22A9 encodes for an organic anion transporter protein expressed predominantly in the liver and belongs to the superfamily of solute carriers (SLC), a large group of transport membrane proteins. The transport of THs across the plasma membrane in peripheral tissues is facilitated by the membrane proteins, and all TH transport proteins known to date belong to the same SLC superfamily as SLC22A9. These results suggest a potential role for SLC22A9 as a novel transporter protein of THs.
|
|
7 | |||
HGVST3392 |
![]()
Chemerin, a novel adipokine, has been associated with metabolic, inflammatory, and atherosclerotic diseases. We aimed to determine the genetic basis of chemerin levels by conducting a genome-wide association study (GWAS) and to investigate the role of RARRES2 polymorphisms and circulating chemerin levels in the long-term outcome of coronary artery disease (CAD). A total of 2197 participants from the Taiwan Biobank (TWB) were recruited for the GWAS analysis, and 481 patients with angiographically confirmed CAD were enrolled for long-term outcome analysis. One locus of genome-wide significance with a single independent association signal was identified in the GWAS for chemerin levels with the peak association at the RARRES2 gene promoter region polymorphism rs3735167 (p = 2.35 × 10-21). In the CAD population, borderline significance was noted between RARRES2 polymorphisms and chemerin levels, whereas high chemerin levels were associated with obesity, female sex, diabetes mellitus, hypertension, current smoking, high platelet and leukocyte counts, anemia, impaired renal function, high C-reactive protein (CRP) levels, and multi-vessel disease. Kaplan⁻Meier survival curves indicated that the patients with high chemerin and CRP levels, but not those with RARRES2 polymorphisms, had a lower survival rate and higher combined cerebral and cardiovascular event rates. Combined chemerin and CRP levels further revealed a stepwise increase in poor clinical outcomes from low- to high-risk subgroups. In conclusion, rs3735167 is the lead RARRES2 polymorphism for chemerin levels in Taiwanese. Chemerin levels, but not the rs3735167 genotypes, predicted the long-term outcome of CAD, especially when combined with CRP levels.
|
|
1 | |||
HGVST3393 |
![]()
IMPORTANCE: Sex differences in genetic associations with human longevity remain largely unknown; investigations on this topic are important for individualized health care. OBJECTIVE: To explore sex differences in genetic associations with longevity. DESIGN SETTING AND PARTICIPANTS: This population-based case-control study used sex-specific genome-wide association study and polygenic risk score (PRS) analyses to examine sex differences in genetic associations with longevity. Five hundred sixty-four male and 1614 female participants older than 100 years were compared with a control group of 773 male and 1526 female individuals aged 40 to 64 years. All were Chinese Longitudinal Healthy Longevity Study participants with Han ethnicity who were recruited in 1998 and 2008 to 2014. MAIN OUTCOMES AND MEASURES: Sex-specific loci and pathways associated with longevity and PRS measures of joint effects of sex-specific loci. RESULTS: Eleven male-specific and 11 female-specific longevity loci (P < 10-5) and 35 male-specific and 25 female-specific longevity loci (10-5 ≤ P < 10-4) were identified. Each of these loci's associations with longevity were replicated in north and south regions of China in one sex but were not significant in the other sex (P = .13-.97), and loci-sex interaction effects were significant (P < .05). The associations of loci rs60210535 of the LINC00871 gene with longevity were replicated in Chinese women (P = 9.0 × 10-5) and US women (P = 4.6 × 10-5) but not significant in Chinese and US men. The associations of the loci rs2622624 of the ABCG2 gene were replicated in Chinese women (P = 6.8 × 10-5) and European women (P = .003) but not significant in both Chinese and European men. Eleven male-specific pathways (inflammation and immunity genes) and 34 female-specific pathways (tryptophan metabolism and PGC-1α induced) were significantly associated with longevity (P < .005; false discovery rate < 0.05). The PRS analyses demonstrated that sex-specific associations with longevity of the 4 exclusive groups of 11 male-specific and 11 female-specific loci (P < 10-5) and 35 male-specific and 25 female-specific loci (10-5 ≤P < 10-4) were jointly replicated across north and south discovery and target samples. Analyses using the combined data set of north and south showed that these 4 groups of sex-specific loci were jointly and significantly associated with longevity in one sex (P = 2.9 × 10-70 to 1.3 × 10-39) but not jointly significant in the other sex (P = .11 to .70), while interaction effects between PRS and sex were significant (P = 4.8 × 10-50 to 1.2 × 10-16). CONCLUSION AND RELEVANCE: The sex differences in genetic associations with longevity are remarkable, but have been overlooked by previously published genome-wide association studies on longevity. This study contributes to filling this research gap and provides a scientific basis for further investigating effects of sex-specific genetic variants and their interactions with environment on healthy aging, which may substantially contribute to more effective and targeted individualized health care for male and female elderly individuals.
|
|
20 | |||
HGVST3367 |
![]()
Body mass and body fat composition are of clinical interest due to their links to cardiovascular- and metabolic diseases. Fat stored in the trunk has been suggested to be more pathogenic compared to fat stored in other compartments. In this study, we perform genome-wide association studies (GWAS) for the proportion of body fat distributed to the arms, legs and trunk estimated from segmental bio-electrical impedance analysis (sBIA) for 362,499 individuals from the UK Biobank. 98 independent associations with body fat distribution are identified, 29 that have not previously been associated with anthropometric traits. A high degree of sex-heterogeneity is observed and the effects of 37 associated variants are stronger in females compared to males. Our findings also implicate that body fat distribution in females involves mesenchyme derived tissues and cell types, female endocrine tissues as well as extracellular matrix maintenance and remodeling.
|
|
249 | |||
HGVST3369 |
![]()
Although type 2 diabetes (T2D) results from metabolic defects in insulin secretion and insulin sensitivity, most of the genetic risk loci identified to date relates to insulin secretion. We reported that T2D loci influencing insulin sensitivity may be identified through interactions with insulin secretion loci, thereby leading to T2D. Here, we hypothesize that joint testing of variant main effects and interaction effects with an insulin secretion locus increases power to identify genetic interactions leading to T2D. We tested this hypothesis with an intronic MTNR1B SNP, rs10830963, which is associated with acute insulin response to glucose, a dynamic measure of insulin secretion. rs10830963 was tested for interaction and joint (main + interaction) effects with genome-wide data in African Americans (2,452 cases and 3,772 controls) from five cohorts. Genome-wide genotype data (Affymetrix Human Genome 6.0 array) was imputed to a 1000 Genomes Project reference panel. T2D risk was modeled using logistic regression with rs10830963 dosage, age, sex, and principal component as predictors. Joint effects were captured using the Kraft two degrees of freedom test. Genome-wide significant (P < 5 × 10-8 ) interaction with MTNR1B and joint effects were detected for CMIP intronic SNP rs17197883 (Pinteraction = 1.43 × 10-8 ; Pjoint = 4.70 × 10-8 ). CMIP variants have been nominally associated with T2D, fasting glucose, and adiponectin in individuals of East Asian ancestry, with high-density lipoprotein, and with waist-to-hip ratio adjusted for body mass index in Europeans. These data support the hypothesis that additional genetic factors contributing to T2D risk, including insulin sensitivity loci, can be identified through interactions with insulin secretion loci.
|
|
0 | |||
HGVST3371 |
![]()
Recent genome-wide association studies (GWAS) with metabolomics data linked genetic variation in the human genome to differences in individual metabolite levels. A strong relevance of this metabolic individuality for biomedical and pharmaceutical research has been reported. However, a considerable amount of the molecules currently quantified by modern metabolomics techniques are chemically unidentified. The identification of these "unknown metabolites" is still a demanding and intricate task, limiting their usability as functional markers of metabolic processes. As a consequence, previous GWAS largely ignored unknown metabolites as metabolic traits for the analysis. Here we present a systems-level approach that combines genome-wide association analysis and Gaussian graphical modeling with metabolomics to predict the identity of the unknown metabolites. We apply our method to original data of 517 metabolic traits, of which 225 are unknowns, and genotyping information on 655,658 genetic variants, measured in 1,768 human blood samples. We report previously undescribed genotype-metabotype associations for six distinct gene loci (SLC22A2, COMT, CYP3A5, CYP2C18, GBA3, UGT3A1) and one locus not related to any known gene (rs12413935). Overlaying the inferred genetic associations, metabolic networks, and knowledge-based pathway information, we derive testable hypotheses on the biochemical identities of 106 unknown metabolites. As a proof of principle, we experimentally confirm nine concrete predictions. We demonstrate the benefit of our method for the functional interpretation of previous metabolomics biomarker studies on liver detoxification, hypertension, and insulin resistance. Our approach is generic in nature and can be directly transferred to metabolomics data from different experimental platforms.
|
|
76 | |||
HGVST3352 |
![]()
Background: Fluorodeoxyglucose f18 positron emission tomography (18F-FDG PET) is regarded as the only functional neuroimaging biomarker for degeneration which can be used to increase the certainty of Alzheimer's disease (AD) pathophysiological process in research settings or as an optional clinical tool where available. Although a decline in FDG metabolism was confirmed in some regions known to be associated with AD, there was little known about the genetic association of FDG metabolism in AD cohorts. In this study, we present the first genome-wide association study (GWAS) analysis of brain FDG metabolism. Methods: A total of 222 individuals were included from the Alzheimer's Disease Neuroimaging Initiative 1 (ADNI-1) cohort. All subjects were restricted to non-Hispanic Caucasians and met all quality control (QC) criteria. Associations of 18F-FDG with the genetic variants were assessed using PLINK 1.07 under the additive genetic model. Genome-wide associations were visualized using a software program R 3.2.3. Results: One significant SNP rs12444565 in RNA-binding Fox1 (RBFOX1) was found to have a strong association with 18F-FDG (P=6.06×10-8). Rs235141, rs79037, rs12526331 and rs12529764 were identified as four suggestive loci associated with 18F-FDG. Conclusions: Our study results suggest that a genome-wide significant SNP (rs12444565) in the RBFOX1, and four suggestive loci (rs235141, rs79037, rs12526331 and rs12529764) are associated with 18F-FDG.
|
|
4 | |||
HGVST3329 |
![]()
The antileukaemic drug 6-mercaptopurine is converted into thioguanine nucleotides (TGN) and incorporated into DNA (DNA-TG), the active end metabolite. In a series of genome-wide association studies, we analysed time-weighted means (wm) of erythrocyte concentrations of TGN (Ery-TGN) and DNA-TG in 1009 patients undergoing maintenance therapy for acute lymphoblastic leukaemia (ALL). In discovery analyses (454 patients), the propensity for DNA-TG incorporation (wmDNA-TG/wmEry-TGN ratio) was significantly associated with three intronic SNPs in NT5C2 (top hit: rs72846714; P = 2.09 × 10-10, minor allele frequency 15%). In validation analyses (555 patients), this association remained significant during both early and late maintenance therapy (P = 8.4 × 10-6 and 1.3 × 10-3, respectively). The association was mostly driven by differences in wmEry-TGN, but in regression analyses adjusted for wmEry-TGN (P < 0.0001), rs72846714-A genotype was also associated with a higher wmDNA-TG (P = 0.029). Targeted sequencing of NT5C2 did not identify any missense variants associated with rs72846714 or wmEry-TGN/wmDNA-TG. rs72846714 was not associated with relapse risk, but in a separate cohort of 180 children with relapsed ALL, rs72846714-A genotype was associated with increased occurrence of relapse-specific NT5C2 gain-of-function mutations that reduce cytosol TGN levels (P = 0.03). These observations highlight the impact of both germline and acquired mutations in drug metabolism and disease trajectory.
|
|
3 | |||
HGVST3335 |
![]()
Bronchopulmonary dysplasia in premature infants is a common and often severe lung disease with long-term sequelae. A genetic component is suspected but not fully defined. We performed an ancestry and genome-wide association study to identify variants, genes, and pathways associated with survival without bronchopulmonary dysplasia in 387 high-risk infants treated with inhaled nitric oxide in the Trial of Late Surfactant study. Global African genetic ancestry was associated with increased survival without bronchopulmonary dysplasia among infants of maternal self-reported Hispanic white race/ethnicity [odds ratio (OR) = 4.5, P = 0.01]. Admixture mapping found suggestive outcome associations with local African ancestry at chromosome bands 18q21 and 10q22 among infants of maternal self-reported African-American race/ethnicity. For all infants, the top individual variant identified was within the intron of NBL1, which is expressed in midtrimester lung and is an antagonist of bone morphogenetic proteins ( rs372271081 , OR = 0.17, P = 7.4 × 10-7). The protective allele of this variant was significantly associated with lower nitric oxide metabolites in the urine of non-Hispanic white infants ( P = 0.006), supporting a role in the racial differential response to nitric oxide. Interrogating genes upregulated in bronchopulmonary dysplasia lungs indicated association with variants in CCL18, a cytokine associated with fibrosis and interstitial lung disease, and pathway analyses implicated variation in genes involved in immune/inflammatory processes in response to infection and mechanical ventilation. Our results suggest that genetic variation related to lung development, drug metabolism, and immune response contribute to individual and racial/ethnic differences in respiratory outcomes following inhaled nitric oxide treatment of high-risk premature infants.
|
|
9 | |||
HGVST3347 |
![]()
Carotid artery intima media thickness (cIMT) and carotid plaque are measures of subclinical atherosclerosis associated with ischemic stroke and coronary heart disease (CHD). Here, we undertake meta-analyses of genome-wide association studies (GWAS) in 71,128 individuals for cIMT, and 48,434 individuals for carotid plaque traits. We identify eight novel susceptibility loci for cIMT, one independent association at the previously-identified PINX1 locus, and one novel locus for carotid plaque. Colocalization analysis with nearby vascular expression quantitative loci (cis-eQTLs) derived from arterial wall and metabolic tissues obtained from patients with CHD identifies candidate genes at two potentially additional loci, ADAMTS9 and LOXL4. LD score regression reveals significant genetic correlations between cIMT and plaque traits, and both cIMT and plaque with CHD, any stroke subtype and ischemic stroke. Our study provides insights into genes and tissue-specific regulatory mechanisms linking atherosclerosis both to its functional genomic origins and its clinical consequences in humans.
|
|
20 | |||
HGVST3306 |
![]()
Selenium (Se) is an essential trace element in human nutrition, but its role in certain health conditions, particularly among Se sufficient populations, is controversial. A genome-wide association study (GWAS) of blood Se concentrations previously identified a locus at 5q14 near BHMT. We performed a GW meta-analysis of toenail Se concentrations, which reflect a longer duration of exposure than blood Se concentrations, including 4162 European descendants from four US cohorts. Toenail Se was measured using neutron activation analysis. We identified a GW-significant locus at 5q14 (P < 1 × 10(-16)), the same locus identified in the published GWAS of blood Se based on independent cohorts. The lead single-nucleotide polymorphism (SNP) explained ∼1% of the variance in toenail Se concentrations. Using GW-summary statistics from both toenail and blood Se, we observed statistical evidence of polygenic overlap (P < 0.001) and meta-analysis of results from studies of either trait (n = 9639) yielded a second GW-significant locus at 21q22.3, harboring CBS (P < 4 × 10(-8)). Proteins encoded by genes at 5q14 and 21q22.3 function in homocysteine (Hcy) metabolism, and index SNPs for each have previously been associated with betaine and Hcy levels in GWAS. Our findings show evidence of a genetic link between Se and Hcy pathways, both involved in cardiometabolic disease.
|
|
28 | |||
HGVST3305 |
![]()
Usual sleep duration is a heritable trait correlated with psychiatric morbidity, cardiometabolic disease and mortality, although little is known about the genetic variants influencing this trait. A genome-wide association study (GWAS) of usual sleep duration was conducted using 18 population-based cohorts totaling 47 180 individuals of European ancestry. Genome-wide significant association was identified at two loci. The strongest is located on chromosome 2, in an intergenic region 35- to 80-kb upstream from the thyroid-specific transcription factor PAX8 (lowest P=1.1 × 10(-9)). This finding was replicated in an African-American sample of 4771 individuals (lowest P=9.3 × 10(-4)). The strongest combined association was at rs1823125 (P=1.5 × 10(-10), minor allele frequency 0.26 in the discovery sample, 0.12 in the replication sample), with each copy of the minor allele associated with a sleep duration 3.1 min longer per night. The alleles associated with longer sleep duration were associated in previous GWAS with a more favorable metabolic profile and a lower risk of attention deficit hyperactivity disorder. Understanding the mechanisms underlying these associations may help elucidate biological mechanisms influencing sleep duration and its association with psychiatric, metabolic and cardiovascular disease.
|
|
13 | |||
HGVST3295 |
![]()
The secretion of insulin and glucagon from the pancreas and the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) from the gastrointestinal tract is essential for glucose homeostasis. Several novel treatment strategies for type 2 diabetes (T2D) mimic GLP-1 actions or inhibit incretin degradation (DPP4 inhibitors), but none is thus far aimed at increasing the secretion of endogenous incretins. In order to identify new potential therapeutic targets for treatment of T2D, we performed a meta-analysis of a GWAS and an exome-wide association study of circulating insulin, glucagon, GIP, and GLP-1 concentrations measured during an oral glucose tolerance test in up to 7,828 individuals. We identified 6 genome-wide significant functional loci associated with plasma incretin concentrations in or near the SLC5A1 (encoding SGLT1), GIPR, ABO, GLP2R, F13A1, and HOXD1 genes and studied the effect of these variants on mRNA expression in pancreatic islet and on metabolic phenotypes. Immunohistochemistry showed expression of GIPR, ABO, and HOXD1 in human enteroendocrine cells and expression of ABO in pancreatic islets, supporting a role in hormone secretion. This study thus provides candidate genes and insight into mechanisms by which secretion and breakdown of GIP and GLP-1 are regulated.
|
|
30 |