Search studies using keywords
Identifier | Name | Phenotype(s) | Total p-values | Related citations | Add data sets to Browser | Related data |
---|---|---|---|---|---|---|
HGVST4858 |
![]()
To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals (24 cohorts). Microbial composition showed high variability across cohorts: only 9 of 410 genera were detected in more than 95% of samples. A genome-wide association study of host genetic variation regarding microbial taxa identified 31 loci affecting the microbiome at a genome-wide significant (P < 5 × 10-8) threshold. One locus, the lactase (LCT) gene locus, reached study-wide significance (genome-wide association study signal: P = 1.28 × 10-20), and it showed an age-dependent association with Bifidobacterium abundance. Other associations were suggestive (1.95 × 10-10 < P < 5 × 10-8) but enriched for taxa showing high heritability and for genes expressed in the intestine and brain. A phenome-wide association study and Mendelian randomization identified enrichment of microbiome trait loci in the metabolic, nutrition and environment domains and suggested the microbiome might have causal effects in ulcerative colitis and rheumatoid arthritis.
|
|
208 | |||
HGVST4841 |
![]()
Approximately 30% of older adults exhibit the neuropathological features of Alzheimer's disease without signs of cognitive impairment. Yet, little is known about the genetic factors that allow these potentially resilient individuals to remain cognitively unimpaired in the face of substantial neuropathology. We performed a large, genome-wide association study (GWAS) of two previously validated metrics of cognitive resilience quantified using a latent variable modelling approach and representing better-than-predicted cognitive performance for a given level of neuropathology. Data were harmonized across 5108 participants from a clinical trial of Alzheimer's disease and three longitudinal cohort studies of cognitive ageing. All analyses were run across all participants and repeated restricting the sample to individuals with unimpaired cognition to identify variants at the earliest stages of disease. As expected, all resilience metrics were genetically correlated with cognitive performance and education attainment traits (P-values < 2.5 × 10-20), and we observed novel correlations with neuropsychiatric conditions (P-values < 7.9 × 10-4). Notably, neither resilience metric was genetically correlated with clinical Alzheimer's disease (P-values > 0.42) nor associated with APOE (P-values > 0.13). In single variant analyses, we observed a genome-wide significant locus among participants with unimpaired cognition on chromosome 18 upstream of ATP8B1 (index single nucleotide polymorphism rs2571244, minor allele frequency = 0.08, P = 2.3 × 10-8). The top variant at this locus (rs2571244) was significantly associated with methylation in prefrontal cortex tissue at multiple CpG sites, including one just upstream of ATPB81 (cg19596477; P = 2 × 10-13). Overall, this comprehensive genetic analysis of resilience implicates a putative role of vascular risk, metabolism, and mental health in protection from the cognitive consequences of neuropathology, while also providing evidence for a novel resilience gene along the bile acid metabolism pathway. Furthermore, the genetic architecture of resilience appears to be distinct from that of clinical Alzheimer's disease, suggesting that a shift in focus to molecular contributors to resilience may identify novel pathways for therapeutic targets.
|
|
38 | |||
HGVST4842 |
![]()
BACKGROUND & AIMS: Sarcopenia elevates metabolic disorders in the elderly, and genetic and environmental factors influence the risk of sarcopenia. The purpose of the study was to examine the hypothesis that polygenetic variants for sarcopenic risk had interactions with metabolic disorders and lifestyles associated with sarcopenia risk in adults >50 years in a large urban hospital cohort. METHODS: Sarcopenia was defined as an appendicular skeletal muscle mass/body weight (SMI) < 29.0% for men and <22.8% for women estimated from participants aged 18-39 years in the KNHANES 2009-2010. Genetic variants were selected using a genome-wide association study for sarcopenia (sarcopenia, n = 1368; control, n = 15,472). The best model showing the gene-gene interactions was selected using a generalized multifactor dimensionality reduction. The polygenic risk scores (PRS) were generated by summing the selected SNP risk alleles in the best model. RESULTS: SMI was much higher in the control subjects than the sarcopenia subjects in both genders, and the fat mass index was opposite the SMI. The five-single nucleotide polymorphisms (SNPs) model included FADS2_rs97384, MYO10_rs31574 KCNQ5_rs6453647, DOCK5_rs11135857, and LRP1B_ rs74659977. Sarcopenia risk was positively associated with the PRS of the five-SNP model (ORs = 1.977, 95% CI = 1.634-2.393). The PRS interacted with age (P < 0.0001), metabolic syndrome (P = 0.01), grip strength (P = 0.007), and serum total cholesterol concentrations (P = 0.005) for the sarcopenia risk. There were no interactions of PRS with the lifestyle components except for exercise. CONCLUSION: The genetic impact may be offset in the elderly, having metabolic syndrome, high serum total cholesterol concentrations, and high grip strength, but only exercise in the lifestyle factors can overcome the genetic effect. Middle-aged and elderly participants with a genetic risk for sarcopenia may require regular exercise to maintain high grip strength and prevent metabolic syndrome.
|
|
2 | |||
HGVST4843 |
![]()
Takayasu arteritis is a rare inflammatory disease of large arteries. We performed a genetic study in Takayasu arteritis comprising 6,670 individuals (1,226 affected individuals) from five different populations. We discovered HLA risk factors and four non-HLA susceptibility loci in VPS8, SVEP1, CFL2, and chr13q21 and reinforced IL12B, PTK2B, and chr21q22 as robust susceptibility loci shared across ancestries. Functional analysis proposed plausible underlying disease mechanisms and pinpointed ETS2 as a potential causal gene for chr21q22 association. We also identified >60 candidate loci with suggestive association (p < 5 × 10-5) and devised a genetic risk score for Takayasu arteritis. Takayasu arteritis was compared to hundreds of other traits, revealing the closest genetic relatedness to inflammatory bowel disease. Epigenetic patterns within risk loci suggest roles for monocytes and B cells in Takayasu arteritis. This work enhances understanding of the genetic basis and pathophysiology of Takayasu arteritis and provides clues for potential new therapeutic targets.
|
|
55 | |||
HGVST4844 |
![]()
Frailty is a common geriatric syndrome and strongly associated with disability, mortality and hospitalization. Frailty is commonly measured using the frailty index (FI), based on the accumulation of a number of health deficits during the life course. The mechanisms underlying FI are multifactorial and not well understood, but a genetic basis has been suggested with heritability estimates between 30 and 45%. Understanding the genetic determinants and biological mechanisms underpinning FI may help to delay or even prevent frailty. We performed a genome-wide association study (GWAS) meta-analysis of a frailty index in European descent UK Biobank participants (n = 164,610, 60-70 years) and Swedish TwinGene participants (n = 10,616, 41-87 years). FI calculation was based on 49 or 44 self-reported items on symptoms, disabilities and diagnosed diseases for UK Biobank and TwinGene, respectively. 14 loci were associated with the FI (p < 5*10-8 ). Many FI-associated loci have established associations with traits such as body mass index, cardiovascular disease, smoking, HLA proteins, depression and neuroticism; however, one appears to be novel. The estimated single nucleotide polymorphism (SNP) heritability of the FI was 11% (0.11, SE 0.005). In enrichment analysis, genes expressed in the frontal cortex and hippocampus were significantly downregulated (adjusted p < 0.05). We also used Mendelian randomization to identify modifiable traits and exposures that may affect frailty risk, with a higher educational attainment genetic risk score being associated with a lower degree of frailty. Risk of frailty is influenced by many genetic factors, including well-known disease risk factors and mental health, with particular emphasis on pathways in the brain.
|
|
14 | |||
HGVST4845 |
![]()
Given that substantial genetic components have been shown in ischemic stroke, intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH), heritability may be higher in early-onset than late-onset individuals with these conditions. Although genome-wide association studies (GWASs) have identified various genes and loci significantly associated with ischemic stroke, ICH, or intracranial aneurysm mainly in European ancestry populations, genetic variants that contribute to susceptibility to these disorders remain to be identified definitively. We performed exome-wide association studies (EWASs) to identify genetic variants that confer susceptibility to ischemic stroke, ICH, or SAH in early-onset subjects with these conditions. A total of 6,649 individuals aged ≤65 years were examined. For the EWAS of ischemic or hemorrhagic stroke, 6,224 individuals (450 subjects with ischemic stroke, 5,774 controls) or 6,179 individuals (261 subjects with ICH, 176 subjects with SAH, 5,742 controls), respectively, were examined. EWASs were performed with the use of Illumina Human Exome-12 v1.2 DNA Analysis BeadChip or Infinium Exome-24 v1.0 BeadChip. To compensate for multiple comparisons of allele frequencies with ischemic stroke, ICH, or SAH, we applied a false discovery rate (FDR) of <0.05 for statistical significance of association. The association of allele frequencies of 31,245 single nucleotide polymorphisms (SNPs) that passed quality control to ischemic stroke was examined with Fisher's exact test, and 31 SNPs were significantly (FDR <0.05) associated with ischemic stroke. The association of allele frequencies of 31,253 or 30,970 SNPs to ICH or SAH, respectively, was examined with Fisher's exact test, and six or two SNPs were significantly associated with ICH or SAH, respectively. Multivariable logistic regression analysis with adjustment for age, sex, and the prevalence of hypertension and diabetes mellitus revealed that 12 SNPs were significantly [P<0.0004 (0.05/124)] related to ischemic stroke. Similar analysis with adjustment for age, sex, and the prevalence of hypertension revealed that six or two SNPs were significantly [P<0.0016 (0.05/32)] related to ICH or SAH, respectively. After examination of linkage disequilibrium of identified SNPs and results of previous GWASs, we identified HHIPL2, CTNNA3, LOC643770, UTP20, and TRIB3 as susceptibility loci for ischemic stroke, DNTTIP2 and FAM205A as susceptibility loci for ICH, and FAM160A1 and OR52E4 as such loci for SAH. Therefore, to the best of our knowledge, we have newly identified nine genes that confer susceptibility to early-onset ischemic stroke, ICH, or SAH. Determination of genotypes for the SNPs in these genes may prove informative for assessment of the genetic risk for ischemic stroke, ICH, or SAH in Japanese.
|
|
13 | |||
HGVST4846 |
![]()
The foundation for osteoporosis risk is, in part, established during childhood, adolescence, and young adulthood, all periods of development when bone mass is acquired rapidly. The relative quantity of bone mass accrued is influenced by both lifestyle and genetic factors, although the genetic component is not yet well understood. The purpose of this study was to use a genome-wide association (GWA) analysis to discover single nucleotide polymorphisms (SNPs) associated with: (1) the sex-specific hip bone mineral content at approximately the age of 19 when the amount of bone accrued is near its peak; and (2) the sex-specific rate of hip bone mineral content accrual during the adolescent growth spurt. The Iowa Bone Development Study, a longitudinal cohort study exploring bone health in children, adolescents, and young adults was the source of data. From this cohort, n = 364 (190 females, 174 males) participants were included in GWA analyses to address (1) and n = 258 participants (125 females and 133 males) were included in GWA analyses to address (2). Twenty SNPS were detected having p < 1.0 × 10-5. Of most biologic relevance were 2 suggestive SNPs (rs2051756 and rs2866908) detected in an intron of the DKK2 gene through the GWA analysis that explored peak bone mass in females.
|
|
12 | |||
HGVST4847 |
![]()
AIMS/HYPOTHESIS: Our study aimed to integrate maternal metabolic and genetic data related to insulin sensitivity during pregnancy to provide novel insights into mechanisms underlying pregnancy-induced insulin resistance. METHODS: Fasting and 1 h serum samples were collected from women in the Hyperglycemia and Adverse Pregnancy Outcome study who underwent an OGTT at ∼28 weeks' gestation. We obtained targeted and non-targeted metabolomics and genome-wide association data from 1600 and 4528 mothers, respectively, in four ancestry groups (Northern European, Afro-Caribbean, Mexican American and Thai); 1412 of the women had both metabolomics and genome-wide association data. Insulin sensitivity was calculated using a modified insulin sensitivity index that included fasting and 1 h glucose and C-peptide levels after a 75 g glucose load. RESULTS: Per-metabolite and network analyses across the four ancestries identified numerous metabolites associated with maternal insulin sensitivity before and 1 h after a glucose load, ranging from amino acids and carbohydrates to fatty acids and lipids. Genome-wide association analyses identified 12 genetic variants in the glucokinase regulatory protein gene locus that were significantly associated with maternal insulin sensitivity, including a common functional missense mutation, rs1260326 (β = -0.2004, p = 4.67 × 10-12 in a meta-analysis across the four ancestries). This SNP was also significantly associated with multiple fasting and 1 h metabolites during pregnancy, including fasting and 1 h triacylglycerols and 2-hydroxybutyrate and 1 h lactate, 2-ketoleucine/ketoisoleucine and palmitoleic acid. Mediation analysis suggested that 1 h palmitoleic acid contributes, in part, to the association of rs1260326 with maternal insulin sensitivity, explaining 13.7% (95% CI 4.0%, 23.3%) of the total effect. CONCLUSIONS/INTERPRETATION: The present study demonstrates commonalities between metabolites and genetic variants associated with insulin sensitivity in the gravid and non-gravid states and provides insights into mechanisms underlying pregnancy-induced insulin resistance. Graphical abstract.
|
|
1 | |||
HGVST4848 |
![]()
Human metabolism is influenced by genetic and environmental factors. Previous studies have identified over 23 loci associated with more than 26 urine metabolites levels in adults, which are known as urinary metabolite quantitative trait loci (metabQTLs). The aim of the present study is the identification for the first time of urinary metabQTLs in children and their interaction with dietary patterns. Association between genome-wide genotyping data and 44 urine metabolite levels measured by proton nuclear magnetic resonance spectroscopy was tested in 996 children from the Human Early Life Exposome project. Twelve statistically significant urine metabQTLs were identified, involving 11 unique loci and 10 different metabolites. Comparison with previous findings in adults revealed that six metabQTLs were already known, and one had been described in serum and three were involved the same locus as other reported metabQTLs but had different urinary metabolites. The remaining two metabQTLs represent novel urine metabolite-locus associations, which are reported for the first time in this study [single nucleotide polymorphism (SNP) rs12575496 for taurine, and the missense SNP rs2274870 for 3-hydroxyisobutyrate]. Moreover, it was found that urinary taurine levels were affected by the combined action of genetic variation and dietary patterns of meat intake as well as by the interaction of this SNP with beverage intake dietary patterns. Overall, we identified 12 urinary metabQTLs in children, including two novel associations. While a substantial part of the identified loci affected urinary metabolite levels both in children and in adults, the metabQTL for taurine seemed to be specific to children and interacted with dietary patterns.
|
|
8 | |||
HGVST4838 |
![]()
BACKGROUND: A substantial number of patients diagnosed with multiple sclerosis (MS) suffer from depression in addition to physical symptoms and disability. Recent evidence suggests a stronger relationship may exist between MS and depression than previously thought, in which a diagnosis of depression may be prodromic to the development of MS. METHODS: A genome-wide association study (GWAS) was performed to identify genetic variants associated with the development of depression in a cohort of MS patients. The control group (n = 1180) was composed of MS patients with no diagnoses of depression as determined by ICD-9 and ICD-10 billing codes present in the electronic health record (EHR). Separate analyses were performed for three different case groups: 1) MS patients having a depression diagnosis at any time (n = 182), 2) MS patients having a depression diagnosis one year pre-MS diagnosis (n = 27), and 3) MS patients having a depression diagnosis one year post-MS diagnosis (n = 130). Logistic regression analyses were also performed to test for associations between the development of depression and an APOE tagging variant, as APOE was previously linked to depressive affect in MS. An additional logistic regression analysis tested for associations between depression in MS patients and SNPs associated with depression in the general population. Pathway enrichment analyses were also conducted to identify pathways that link the two diseases. RESULTS: GWAS identified no novel associations between variants and a diagnosis of depression relative to a diagnosis of MS. One variant, rs1432639, associated with depression in the general population, was significantly associated with the development of depression post-MS diagnosis. The APOE-related SNPs were not associated with depression in this study population. An IGF1 pathway approached statistical significance in patients diagnosed with depression prior to a diagnosis of MS. CONCLUSION: rs1432639 and the IGF1 pathway provide evidence for a genetic link between MS and depression that warrants further research.
|
|
8 | |||
HGVST4839 |
![]()
A retrospective meta-analysis of magnetic resonance imaging voxel-based morphometry studies proposed that reduced gray matter volumes in the dorsal anterior cingulate and the left and right anterior insular cortex-areas that constitute hub nodes of the salience network-represent a common substrate for major psychiatric disorders. Here, we investigated the hypothesis that the common substrate serves as an intermediate phenotype to detect genetic risk variants relevant for psychiatric disease. To this end, after a data reduction step, we conducted genome-wide association studies of a combined common substrate measure in four population-based cohorts (n = 2271), followed by meta-analysis and replication in a fifth cohort (n = 865). After correction for covariates, the heritability of the common substrate was estimated at 0.50 (standard error 0.18). The top single-nucleotide polymorphism (SNP) rs17076061 was associated with the common substrate at genome-wide significance and replicated, explaining 1.2% of the common substrate variance. This SNP mapped to a locus on chromosome 5q35.2 harboring genes involved in neuronal development and regeneration. In follow-up analyses, rs17076061 was not robustly associated with psychiatric disease, and no overlap was found between the broader genetic architecture of the common substrate and genetic risk for major depressive disorder, bipolar disorder, or schizophrenia. In conclusion, our study identified that common genetic variation indeed influences the common substrate, but that these variants do not directly translate to increased disease risk. Future studies should investigate gene-by-environment interactions and employ functional imaging to understand how salience network structure translates to psychiatric disorder risk.
|
|
1 | |||
HGVST4840 |
![]()
Recent population-based1-4 and clinical studies5 have identified a range of factors associated with human gut microbiome variation. Murine quantitative trait loci6, human twin studies7 and microbiome genome-wide association studies1,3,8-12 have provided evidence for genetic contributions to microbiome composition. Despite this, there is still poor overlap in genetic association across human studies. Using appropriate taxon-specific models, along with support from independent cohorts, we show an association between human host genotype and gut microbiome variation. We also suggest that interpretation of applied analyses using genetic associations is complicated by the probable overlap between genetic contributions and heritable components of host environment. Using faecal 16S ribosomal RNA gene sequences and host genotype data from the Flemish Gut Flora Project (n = 2,223) and two German cohorts (FoCus, n = 950; PopGen, n = 717), we identify genetic associations involving multiple microbial traits. Two of these associations achieved a study-level threshold of P = 1.57 × 10-10; an association between Ruminococcus and rs150018970 near RAPGEF1 on chromosome 9, and between Coprococcus and rs561177583 within LINC01787 on chromosome 1. Exploratory analyses were undertaken using 11 other genome-wide associations with strong evidence for association (P < 2.5 × 10-8) and a previously reported signal of association between rs4988235 (MCM6/LCT) and Bifidobacterium. Across these 14 single-nucleotide polymorphisms there was evidence of signal overlap with other genome-wide association studies, including those for age at menarche and cardiometabolic traits. Mendelian randomization analysis was able to estimate associations between microbial traits and disease (including Bifidobacterium and body composition); however, in the absence of clear microbiome-driven effects, caution is needed in interpretation. Overall, this work marks a growing catalogue of genetic associations that will provide insight into the contribution of host genotype to gut microbiome. Despite this, the uncertain origin of association signals will likely complicate future work looking to dissect function or use associations for causal inference analysis.
|
|
434 | |||
HGVST4827 |
![]()
BACKGROUND: Tumour necrosis factor (TNF) inhibitors are used in the treatment of certain autoimmune diseases but given the role of TNF in tumour biology and atherosclerosis, such therapies may influence the risk of cancer and cardiovascular disease. We conducted a Mendelian randomization study to explore whether TNF levels are causally related to cardiovascular disease and cancer. METHODS: Single-nucleotide polymorphisms associated with TNF levels at genome-wide significance were identified from a genome-wide association study of 30 912 European-ancestry individuals. Three TNF-associated single-nucleotide polymorphisms associated with higher risk of autoimmune diseases were used as instrumental variables. Summary-level data for 14 cardiovascular diseases, overall cancer and 14 site-specific cancers were obtained from UK Biobank and consortia. FINDINGS: Genetically-predicted TNF levels were positively associated with coronary artery disease (odds ratio (OR) 2.25; 95% confidence interval (CI) 1.50, 3.37) and ischaemic stroke (OR 2.27; 95% CI 1.50, 3.43), and inversely associated with overall cancer (OR 0.54; 95% CI 0.42, 0.69), breast cancer (OR 0.51; 95% CI 0.39, 0.67), and colorectal cancer (OR 0.20; 95% CI 0.09, 0.45). There were suggestive associations of TNF with venous thromboembolism (OR 2.18; 95% CI 1.32, 3.59), endometrial cancer (OR 0.25; 95% CI 0.07, 0.94), and lung cancer (OR 0.45; 95% CI 0.21, 0.94). INTERPRETATION: This study found evidence of causal associations of increased TNF levels with higher risk of common cardiovascular diseases and lower risk of overall and certain cancers.
|
|
4 | |||
HGVST4828 |
![]()
Identification of genetic variants associated with glucocorticoids (GC) sensitivity of leukaemia cells may provide insight into potential drug targets and tailored therapy. In the present study, within 72 leukaemic cell lines derived from Japanese patients with B-cell precursor acute lymphoblastic leukaemia (ALL), we conducted genome-wide genotyping of single nucleotide polymorphisms (SNP) and attempted to identify genetic variants associated with GC sensitivity and NR3C1 (GC receptor) gene expression. IC50 measures for prednisolone (Pred) and dexamethasone (Dex) were available using an alamarBlue cell viability assay. IC50 values of Pred showed the strongest association with rs904419 (P = 4.34 × 10-8 ), located between the FRMD4B and MITF genes. The median IC50 values of prednisolone for cell lines with rs904419 AA (n = 13), AG (n = 31) and GG (n = 28) genotypes were 0.089, 0.139 and 297 µmol/L, respectively. For dexamethasone sensitivity, suggestive association was observed for SNP rs2306888 (P = 1.43 × 10-6 ), a synonymous SNP of the TGFBR3 gene. For NR3C1 gene expression, suggestive association was observed for SNP rs11982167 (P = 6.44 × 10-8 ), located in the PLEKHA8 gene. These genetic variants may affect GC sensitivity of ALL cells and may give rise to opportunities in personalized medicine for effective and safe chemotherapy in ALL patients.
|
|
22 | |||
HGVST4829 |
![]()
Racemic RS-4-(4-hydroxyphenyl)-2-butanol (rhododendrol; trade name: Rhododenol [RD]), which is used in topical skin-lightening cosmetics, was unexpectedly reported in Japan to induce leukoderma or vitiligo called RD-induced leukoderma (RIL) after repeated application. To our knowledge, no studies have investigated chemical-induced vitiligo pathogenesis on a genome-wide scale. Here, we conducted a genome-wide association study (GWAS) for 147 cases and 112 controls. CDH13, encoding a glycosylphosphatidylinositol-anchored protein called T-cadherin (T-cad), was identified as the strongest RIL susceptibility gene. RD sensitivity was remarkably increased by T-cad knockdown in cultured normal human melanocytes. Furthermore, we confirmed tyrosinase upregulation and downregulation of the anti-apoptotic molecules (BCL-2 and BCL-XL), suggesting that T-cad is associated with RD via tyrosinase or apoptotic pathway regulation. Finally, monobenzyl ether of hydroquinone sensitivity also tended to increase with T-cad knockdown, suggesting that the T-cad could be a candidate susceptibility gene for RIL and other chemical-induced vitiligo forms. This is the first GWAS for chemical-induced vitiligo, and it could be a useful model for studying the disease's genetic aspects.
|
|
10 | |||
HGVST4830 |
![]()
Rupture of an intracranial aneurysm leads to subarachnoid hemorrhage, a severe type of stroke. To discover new risk loci and the genetic architecture of intracranial aneurysms, we performed a cross-ancestry, genome-wide association study in 10,754 cases and 306,882 controls of European and East Asian ancestry. We discovered 17 risk loci, 11 of which are new. We reveal a polygenic architecture and explain over half of the disease heritability. We show a high genetic correlation between ruptured and unruptured intracranial aneurysms. We also find a suggestive role for endothelial cells by using gene mapping and heritability enrichment. Drug-target enrichment shows pleiotropy between intracranial aneurysms and antiepileptic and sex hormone drugs, providing insights into intracranial aneurysm pathophysiology. Finally, genetic risks for smoking and high blood pressure, the two main clinical risk factors, play important roles in intracranial aneurysm risk, and drive most of the genetic correlation between intracranial aneurysms and other cerebrovascular traits.
|
|
28 | |||
HGVST4831 |
![]()
Microtubule targeting agents (MTAs) are anticancer therapies commonly prescribed for breast cancer and other solid tumors. Sensory peripheral neuropathy (PN) is the major dose-limiting toxicity for MTAs and can limit clinical efficacy. The current pharmacogenomic study aimed to identify genetic variations that explain patient susceptibility and drive mechanisms underlying development of MTA-induced PN. A meta-analysis of genomewide association studies (GWAS) from two clinical cohorts treated with MTAs (Cancer and Leukemia Group B (CALGB) 40502 and CALGB 40101) was conducted using a Cox regression model with cumulative dose to first instance of grade 2 or higher PN. Summary statistics from a GWAS of European subjects (n = 469) in CALGB 40502 that estimated cause-specific risk of PN were meta-analyzed with those from a previously published GWAS of European ancestry (n = 855) from CALGB 40101 that estimated the risk of PN. Novel single nucleotide polymorphisms in an enhancer region downstream of sphingosine-1-phosphate receptor 1 (S1PR1 encoding S1PR1 ; e.g., rs74497159, βCALGB 40101 per allele log hazard ratio (95% confidence interval (CI)) = 0.591 (0.254-0.928), βCALGB 40502 per allele log hazard ratio (95% CI) = 0.693 (0.334-1.053); PMETA = 3.62 × 10-7 ) were the most highly ranked associations based on P values with risk of developing grade 2 and higher PN. In silico functional analysis identified multiple regulatory elements and potential enhancer activity for S1PR1 within this genomic region. Inhibition of S1PR1 function in induced pluripotent stem cell-derived human sensory neurons shows partial protection against paclitaxel-induced neurite damage. These pharmacogenetic findings further support ongoing clinical evaluations to target S1PR1 as a therapeutic strategy for prevention and/or treatment of MTA-induced neuropathy.
|
|
18 | |||
HGVST4832 |
![]()
INTRODUCTION: Anorectal malformations (ARM) are rare congenital malformations, resulting from disturbed hindgut development. A genetic etiology has been suggested, but evidence for the involvement of specific genes is scarce. We evaluated the contribution of rare and low-frequency coding variants in ARM etiology, assuming a multifactorial model. METHODS: We analyzed 568 Caucasian ARM patients and 1,860 population-based controls using the Illumina HumanExome Beadchip array, which contains >240,000 rare and low-frequency coding variants. GenomeStudio clustering and calling was followed by re-calling of 'no-calls' using zCall for patients and controls simultaneously. Single variant and gene-based analyses were performed to identify statistically significant associations, applying Bonferroni correction. Following an extra quality control step, candidate variants were selected for validation using Sanger sequencing. RESULTS: When we applied a MAF of ≥1.0%, no variants or genes showed statistically significant associations with ARM. Using a MAF cut-off at 0.4%, 13 variants initially reached statistical significance, but had to be discarded upon further inspection: ten variants represented calling errors of the software, while the minor alleles of the remaining three variants were not confirmed by Sanger sequencing. CONCLUSION: Our results show that rare and low-frequency coding variants with large effect sizes, present on the exome chip do not contribute to ARM etiology.
|
|
13 | |||
HGVST4833 |
![]()
OBJECTIVE: Several single-nucleotide polymorphisms (SNPs) are associated with restless legs syndrome (RLS). This study investigated whether or not additional SNP variants increase the risk of RLS in migraineurs and in migraine with aura (MA) and migraine without aura (MoA) subgroups. METHODS: Migraineurs with and without RLS were genotyped using an Affymetrix array. We performed association analyses for the entire cohort and the MA and MoA subgroups, which were divided further into episodic migraine (EM) and chronic migraine (CM). Potential correlations between SNPs and clinical indices in migraineurs with RLS were examined by multivariate regression analysis. RESULTS: The rs77234324 and rs79004933 SNPs were found in migraineurs with (P = 2.57E-07) and without (P = 3.03E-07) RLS. The A allele frequency for rs77234324 (on LGR6) was 0.1321 in migraineurs with RLS and 0.0166 in those without RLS (odds ratio, 8.978). The T allele frequency for rs79004933 (in the intergenic region) was 0.1981 in migraineurs with RLS and 0.0446 in those without (odds ratio, 5.281). rs2858654, rs76770509, rs4243475 in UTRN, rs150762626, and rs2668375 were identified in migraine with and without RLS in the MoA subgroup (P = 7.56E-09, P = 2.30E-08, P = 1.19E-07, P = 6.86E-07, and P = 8.05E-07, respectively). There was a suggestion of an association between rs10510331 (P = 1.50E-06) and CM and EM in patients with MoA and RLS. Multivariate regression showed a significant relationship between rs79004933 and the Beck Depression Inventory score. INTERPRETATION: rs77234324 in LGR6 and rs79004933 in the intergenic region were associated with RLS in migraineurs. Five SNPs increased the risk of RLS in patients with MoA.
|
|
7 | |||
HGVST4834 |
![]()
In modern drug development, genotype information becomes more frequently collected in randomized controlled trials (RCTs) for individualized risk prediction and personalized medicine development. Finding single nucleotide polymorphisms (SNPs) that are predictive of differential treatment efficacy, measured by a clinical outcome, is fundamentally different and more challenging than the traditional association test for a quantitative trait. With the objective to confidently identify and infer genetic subgroups with enhanced treatment efficacy from a large RCT for an eye disease, age-related macular degeneration (AMD), where the clinical endpoint is binary (progressed or not), we propose a novel SNP-testing procedure for binary clinical outcomes. Specifically, we formulate four contrasts to simultaneously assess all possible genetic effects on a logic-respecting efficacy measure, the relative risk (between treatment and control). Our method controls both within- and across-SNP multiplicity rigorously. We then use real genotype data to perform chromosome-wide simulations to evaluate our method performance and to provide practical recommendations. Finally, we apply the proposed method to perform a genome-wide SNP testing for the AMD trial and successfully identify multiple gene regions with genetic subgroups exhibiting enhanced efficacy in terms of decreasing the AMD progression rate.
|
|
2 |