Search studies using keywords
Identifier | Name | Phenotype(s) | Total p-values | Related citations | Add data sets to Browser | Related data |
---|---|---|---|---|---|---|
HGVST4326 |
![]()
Certolizumab pegol (CZP) is a PEGylated Fc-free tumor necrosis factor (TNF) inhibitor antibody approved for use in the treatment of rheumatoid arthritis (RA), Crohns disease, psoriatic arthritis, axial spondyloarthritis and psoriasis. In a clinical trial of patients with severe RA, CZP improved disease symptoms in approximately half of patients. However, variability in CZP efficacy remains a problem for clinicians, thus, the aim of this study was to identify genetic variants predictive of CZP response. We performed a genome-wide association study (GWAS) of 302 RA patients treated with CZP in the REALISTIC trial to identify common single nucleotide polymorphisms (SNPs) associated with treatment response. Whole-exome sequencing was also performed for 74 CZP extreme responders and non-responders within the same population, as well as 1546 population controls. No common SNPs or rare functional variants were significantly associated with CZP response, though a non-significant enrichment in the RA-implicated KCNK5 gene was observed. Two SNPs near spondin-1 and semaphorin-4G approached genome-wide significance. The results of the current study did not provide an unambiguous predictor of CZP response.
|
|
260,363 | None available | ||
HGVST4325 |
![]()
Background: Genome-wide association studies (GWASs) have identified genes influencing skin ageing and mole count in Europeans, but little is known about the relevance of these (or other genes) in non-Europeans.
Objectives: To conduct a GWAS for facial skin ageing and mole count in adults < 40 years old, of mixed European, Native American and African ancestry, recruited in Latin America.
Methods: Skin ageing and mole count scores were obtained from facial photographs of over 6000 individuals. After quality control checks, three wrinkling traits and mole count were retained for genetic analyses. DNA samples were genotyped with Illumina's HumanOmniExpress chip. Association testing was performed on around 8 703 729 single-nucleotide polymorphisms (SNPs) across the autosomal genome.
Results: Genome-wide significant association was observed at four genome regions: two were associated with wrinkling (in 1p13·3 and 21q21·2), one with mole count (in 1q32·3) and one with both wrinkling and mole count (in 5p13·2). Associated SNPs in 5p13·2 and in 1p13·3 are intronic within SLC45A2 and VAV3, respectively, while SNPs in 1q32·3 are near the SLC30A1 gene, and those in 21q21·2 occur in a gene desert. Analyses of SNPs in IRF4 and MC1R are consistent with a role of these genes in skin ageing.
Conclusions: We replicate the association of wrinkling with variants in SLC45A2, IRF4 and MC1R reported in Europeans. We identify VAV3 and SLC30A1 as two novel candidate genes impacting on wrinkling and mole count, respectively. We provide the first evidence that SLC45A2 influences mole count, in addition to variants in this gene affecting melanoma risk in Europeans.
|
|
30,316 | |||
HGVST4324 |
![]()
Rationale: Genetic factors contribute to the pathogenesis of hypertension, which affects 40% of the adult population, and accounts for 50% of the deaths from stroke and cardiovascular disease. Most genetic studies were performed in white populations, and little was done in other ethnic populations, including the Chinese population. Methods & Results: We report a multi-stage genome-wide association study (GWAS) for hypertension in the Chinese Han population. Our study included a discovery population with 353 hypertension patients and 332 controls, a validation population with 1,592 hypertension cases and 1,302 controls, and an in-silicon replication population with 3,274 cases and 2,734 controls. We identified significant association of hypertension with variant rs2064453 in 20q11 and in an enhancer marked by a DNase hypersensitivity peak cluster in the promoter region of the GGT7 gene encoding gamma-glutamyltransferase 7 (P=3.5×10-7, odds ratio=1.17). Analysis of expression quantitative trait loci (eQTLs) and GGT7 promoter luciferase assays showed that the risk allele T of rs2064453 increased GGT7 expression by enhancing the transcription activation of GGT7. Endothelial cells treated with GGT7 showed a significantly reduced level of phosphorylated ERK1/2 involved in the pathogenesis of hypertension. Knockdown of GGT7 expression significantly increased the expression level of PPP6C encoding the catalytic subunit of phosphoprotein phosphatase 6, also involved in the pathogenesis of hypertension. We also identified significant association between variant rs10847208 located in the last exon of a long noncoding RNA (lncRNA) gene LINC00944 with unknown function (P=1.3×10-7, odds ratio=1.27) and hypertension. eQTLs analysis did not identified any significant association between rs10847208 and LINC00944.
Conclusion: Our data provide mechanistic insights into the genetic mechanism of hypertension, and suggest that the risk allele T of rs2064453 increase risk of hypertension by increasing the expression of GGT7, which leads to reduced ERK1/2 activation and altered expression of PPP6C, resulting in the development of hypertension. The findings provide interesting gene targets for further investigation of novel molecular pathogenic mechanisms of hypertension, and for developing treatments for hypertension.
|
|
27,505 | None available | ||
HGVST4323 |
![]()
To characterize the genetic basis of facial features in Latin Americans, we performed a genome-wide association study (GWAS) of more than 6000 individuals using 59 landmark-based measurements from two-dimensional profile photographs and ~9,000,000 genotyped or imputed single-nucleotide polymorphisms. We detected significant association of 32 traits with at least 1 (and up to 6) of 32 different genomic regions, more than doubling the number of robustly associated face morphology loci reported until now (from 11 to 23). These GWAS hits are strongly enriched in regulatory sequences active specifically during craniofacial development. The associated region in 1p12 includes a tract of archaic adaptive introgression, with a Denisovan haplotype common in Native Americans affecting particularly lip thickness. Among the nine previously unidentified face morphology loci we identified is the VPS13B gene region, and we show that variants in this region also affect midfacial morphology in mice.
|
|
424,753 | |||
HGVST4320 |
![]()
To further characterize the genetic basis of primary biliary cirrhosis (PBC), we genotyped 2426 PBC patients and 5731 unaffected controls from three independent cohorts using a single nucleotide polymorphism (SNP) array (Immunochip) enriched for autoimmune disease risk loci. Meta-analysis of the genotype data sets identified a novel disease-associated locus near the TNFSF11 gene at 13q14, provided evidence for association at six additional immune-related loci not previously implicated in PBC and confirmed associations at 19 of 22 established risk loci. Results of conditional analyses also provided evidence for multiple independent association signals at four risk loci, with haplotype analyses suggesting independent SNP effects at the 2q32 and 16p13 loci, but complex haplotype driven effects at the 3q25 and 6p21 loci. By imputing classical HLA alleles from this data set, four class II alleles independently contributing to the association signal from this region were identified. Imputation of genotypes at the non-HLA loci also provided additional associations, but none with stronger effects than the genotyped variants. An epistatic interaction between the IL12RB2 risk locus at 1p31and the IRF5 risk locus at 7q32 was also identified and suggests a complementary effect of these loci in predisposing to disease. These data expand the repertoire of genes with potential roles in PBC pathogenesis that need to be explored by follow-up biological studies.
|
|
17 | |||
HGVST4321 |
![]()
OBJECTIVE: Osteoarthritis (OA) is the most common form of arthritis and the leading cause of disability in the elderly. Of all the joints, genetic predisposition is strongest for OA of the hand; however, only few genetic risk loci for hand OA have been identified. Our aim was to identify novel genes associated with hand OA and examine the underlying mechanism. METHODS: We performed a genome-wide association study of a quantitative measure of hand OA in 12 784 individuals (discovery: 8743, replication: 4011). Genome-wide significant signals were followed up by analysing gene and allele-specific expression in a RNA sequencing dataset (n=96) of human articular cartilage. RESULTS: We found two significantly associated loci in the discovery set: at chr12 (p=3.5 × 10-10) near the matrix Gla protein (MGP) gene and at chr12 (p=6.1×10-9) near the CCDC91 gene. The DNA variant near the MGP gene was validated in three additional studies, which resulted in a highly significant association between the MGP variant and hand OA (rs4764133, Betameta=0.83, Pmeta=1.8*10-15). This variant is high linkage disequilibrium with a coding variant in MGP, a vitamin K-dependent inhibitor of cartilage calcification. Using RNA sequencing data from human primary cartilage tissue (n=96), we observed that the MGP RNA expression of the hand OA risk allele was significantly lowercompared with the MGP RNA expression of the reference allele (40.7%, p<5*10-16). CONCLUSIONS: Our results indicate that the association between the MGP variant and increased risk for hand OA is caused by a lower expression of MGP, which may increase the burden of hand OA by decreased inhibition of cartilage calcification.
|
|
3 | |||
HGVST4322 |
![]()
Genome-wide approaches including polygenic risk scores (PRSs) are now widely used in medical research; however, few studies have been conducted in low- and middle-income countries (LMICs), especially in South America. This study was designed to test the transferability of psychiatric PRSs to individuals with different ancestral and cultural backgrounds and to provide genome-wide association study (GWAS) results for psychiatric outcomes in this sample. The PrOMIS cohort (N = 3308) was recruited from prenatal care clinics at the Instituto Nacional Materno Perinatal (INMP) in Lima, Peru. Three major psychiatric outcomes (depression, PTSD, and suicidal ideation and/or self-harm) were scored by interviewers using valid Spanish questionnaires. Illumina Multi-Ethnic Global chip was used for genotyping. Standard procedures for PRSs and GWAS were used along with extra steps to rule out confounding due to ancestry. Depression PRSs significantly predicted depression, PTSD, and suicidal ideation/self-harm and explained up to 0.6% of phenotypic variation (minimum p = 3.9 × 10-6). The associations were robust to sensitivity analyses using more homogeneous subgroups of participants and alternative choices of principal components. Successful polygenic prediction of three psychiatric phenotypes in this Peruvian cohort suggests that genetic influences on depression, PTSD, and suicidal ideation/self-harm are at least partially shared across global populations. These PRS and GWAS results from this large Peruvian cohort advance genetic research (and the potential for improved treatments) for diverse global populations.
|
|
14 | |||
HGVST4308 |
![]()
Genome-wide association studies (GWAS) have successfully identified about 70 genomic loci associated with breast cancer. Owing to the complexity of linkage disequilibrium and environmental exposures in different populations, it is essential to perform regional GWAS for better risk prediction. This study aimed to investigate the genetic architecture and to assess common genetic risk model of breast cancer with 6,669 breast cancer patients and 21,930 female controls in the Japanese population. This GWAS identified 11 genomic loci that surpass genome-wide significance threshold of P < 5.0 × 10-8 with nine previously reported loci and two novel loci that include rs9862599 on 3q13.11 (ALCAM) and rs75286142 on 21q22.12 (CLIC6-RUNX1). Validation study was carried out with 981 breast cancer cases and 1,394 controls from the Aichi Cancer Center. Pathway analyses of GWAS signals identified association of dopamine receptor medicated signaling and protein amino acid deacetylation with breast cancer. Weighted genetic risk score showed that individuals who were categorized in the highest risk group are approximately 3.7 times more likely to develop breast cancer compared to individuals in the lowest risk group. This well-powered GWAS is a representative study to identify SNPs that are associated with breast cancer in the Japanese population.
|
|
25 | |||
HGVST4309 |
![]()
Previous studies have suggested that altered asymmetry of the planum temporale (PT) is associated with neurodevelopmental disorders, including dyslexia, schizophrenia, and autism. Shared genetic factors have been suggested to link PT asymmetry to these disorders. In a dataset of unrelated subjects from the general population (UK Biobank, N = 18,057), we found that PT volume asymmetry had a significant heritability of roughly 14%. In genome-wide association analysis, two loci were significantly associated with PT asymmetry, including a coding polymorphism within the gene ITIH5 that is predicted to affect the protein's function and to be deleterious (rs41298373, p = 2.01 × 10-15), and a locus that affects the expression of the genes BOK and DTYMK (rs7420166, p = 7.54 × 10-10). DTYMK showed left-right asymmetry of mRNA expression in post mortem PT tissue. Cortex-wide mapping of these SNP effects revealed influences on asymmetry that went somewhat beyond the PT. Using publicly available genome-wide association statistics from large-scale studies, we saw no significant genetic correlations of PT asymmetry with autism spectrum disorder, attention deficit hyperactivity disorder, schizophrenia, educational attainment or intelligence. Of the top two individual loci associated with PT asymmetry, rs41298373 showed a tentative association with intelligence (unadjusted p = .025), while the locus at BOK/DTYMK showed tentative association with educational attainment (unadjusted Ps < .05). These findings provide novel insights into the genetic contributions to human brain asymmetry, but do not support a substantial polygenic association of PT asymmetry with cognitive variation and mental disorders, as far as can be discerned with current sample sizes.
|
|
4 | |||
HGVST4310 |
![]()
We investigated changes in blood pressure (BP) and metabolic adverse effects, especially elevation of uric acid (UA), after treatment with a thiazide-like diuretic (TD) in patients with essential hypertension. Furthermore, the role of genetic factors in the elevation of UA by TD was assessed by a 500 K SNP DNA microarray. The subjects included 126 hypertensive patients (57 women and 69 men, mean age 59 ± 12 years) who registered for the GEANE (Gene Evaluation for ANtihypertensive Effects) study. After one month of the nontreatment period, TD, indapamide, angiotensin II receptor antagonist valsartan, and Ca channel blocker amlodipine were administered to all patients for 3 months each in a randomized crossover manner. BP, renal function, serum UA level, and electrolytes were measured at baseline and at the end of each treatment period. Single nucleotide polymorphisms (SNPs) associated with UA elevation after treatment with indapamide were investigated by a genome-wide association study (GWAS). Indapamide significantly decreased both office and home BP levels. Treatment with indapamide also significantly reduced the estimated glomerular filtration rate and serum potassium and increased serum UA. Patients whose UA level increased more than 1 mg/dl showed significantly higher baseline office SBP and plasma glucose and showed greater decline in renal function compared with those who showed less UA increase (<1 mg/dl). Some SNPs strongly associated with an increase in UA after treatment with indapamide were identified. This study is the first report on SNPs associated with UA elevation after TD treatment. This information may be useful for the prevention of adverse effects after treatment with TD.
|
|
2 | |||
HGVST4311 |
![]()
Adult-onset Still's disease (AOSD) is a rare and inflammatory disorder characterized by spiking fever, rash, arthritis, and multisystemic involvement. HLA has been shown to be associated with AOSD; however, it could not explain the innate immunity and autoinflammatory characteristics of AOSD. To assess the genetic susceptibility of AOSD, we conducted a genome-wide association study (GWAS) on a cohort of 70 AOSD cases and 688 controls following a replication study of 36 cases and 200 controls and meta-analysis. The plasma concentrations of associated gene product were determined. The GWAS, replication, and combined sample analysis confirmed that SNP rs11102024 on 5'-upstream of CSF1 encoding macrophage colony-stimulating factor (M-CSF) was associated with AOSD (P = 1.20 × 10-8, OR (95% CI): 3.28 (2.25~4.79)). Plasma levels of M-CSF increased in AOSD patients (n = 82, median: 9.31 pg/mL), particularly in the cases with activity score ≥ 6 (n = 42, 10.94 pg/mL), compared to the healthy donors (n = 68, 5.31 pg/mL) (P < 0.0001). Patients carrying rs11102024TT genotype had higher M-CSF levels (median: 20.28 pg/mL) than those with AA genotype (6.82 pg/mL) (P < 0.0001) or AT genotype (11.61 pg/mL) (P = 0.027). Patients with systemic pattern outcome were associated with elevated M-CSF and frequently observed in TT carriers. Our data suggest that genetic variants near CSF1 are associated with AOSD and the rs11102024 T allele links to higher M-CSF levels and systemic outcome. These results provide a promising initiative for the early intervention and therapeutic target of AOSD. Further investigation is needed to have better understandings and the clinical implementation of genetic variants nearby CSF1 in AOSD.
|
|
1 | |||
HGVST4312 |
![]()
Experimental, observational, and clinical trials support a critical role of folate one-carbon metabolism (FOCM) in colorectal cancer (CRC) development. In this report, we focus on understanding the relationship between common genetic variants and metabolites of FOCM. We conducted a genome-wide association study of FOCM biomarkers among 1,788 unaffected (without CRC) individuals of European ancestry from the Colon Cancer Family Registry. Twelve metabolites, including 5-methyltetrahydrofolate, vitamin B2 (flavin mononucleotide and riboflavin), vitamin B6 (4-pyridoxic acid, pyridoxal, and pyridoxamine), total homocysteine, methionine, S-adenosylmethionine, S-adenosylhomocysteine, cystathionine, and creatinine were measured from plasma using liquid chromatography-mass spectrometry (LC-MS) or LC-MS/MS. For each individual biomarker, we estimated genotype array-specific associations followed by a fixed-effect meta-analysis. We identified the variant rs35976024 (at 2p11.2 and intronic of ATOH8) associated with total homocysteine (p = 4.9 × 10-8 ). We found a group of six highly correlated variants on chromosome 15q14 associated with cystathionine (all p < 5 × 10-8 ), with the most significant variant rs28391580 (p = 2.8 × 10-8 ). Two variants (rs139435405 and rs149119426) on chromosome 14q13 showed significant (p < 5 × 10-8 ) associations with S-adenosylhomocysteine. These three biomarkers with significant associations are closely involved in homocysteine metabolism. Furthermore, when assessing the principal components (PCs) derived from seven individual biomarkers, we identified the variant rs12665366 (at 6p25.3 and intronic of EXOC2) associated with the first PC (p = 2.3 × 10-8 ). Our data suggest that common genetic variants may play an important role in FOCM, particularly in homocysteine metabolism.
|
|
4 | |||
HGVST4313 |
![]()
Buruli ulcer, caused by Mycobacterium ulcerans and characterized by devastating necrotizing skin lesions, is the third mycobacterial disease worldwide. The role of host genetics in susceptibility to Buruli ulcer has long been suggested. We conduct the first genome-wide association study of Buruli ulcer on a sample of 1524 well characterized patients and controls from rural Benin. Two-stage analyses identify two variants located within LncRNA genes: rs9814705 in ENSG00000240095.1 (P = 2.85 × 10-7; odds ratio = 1.80 [1.43-2.27]), and rs76647377 in LINC01622 (P = 9.85 × 10-8; hazard ratio = 0.41 [0.28-0.60]). Furthermore, we replicate the protective effect of allele G of a missense variant located in ATG16L1, previously shown to decrease bacterial autophagy (rs2241880, P = 0.003; odds ratio = 0.31 [0.14-0.68]). Our results suggest LncRNAs and the autophagy pathway as critical factors in the development of Buruli ulcer.
|
|
2 | |||
HGVST4314 |
![]()
We analyzed genetic data of 47,429 multiple sclerosis (MS) and 68,374 control subjects and established a reference map of the genetic architecture of MS that includes 200 autosomal susceptibility variants outside the major histocompatibility complex (MHC), one chromosome X variant, and 32 variants within the extended MHC. We used an ensemble of methods to prioritize 551 putative susceptibility genes that implicate multiple innate and adaptive pathways distributed across the cellular components of the immune system. Using expression profiles from purified human microglia, we observed enrichment for MS genes in these brain-resident immune cells, suggesting that these may have a role in targeting an autoimmune process to the central nervous system, although MS is most likely initially triggered by perturbation of peripheral immune responses.
|
|
294 | |||
HGVST4315 |
![]()
Recent advances in highly multiplexed immunoassays have allowed systematic large-scale measurement of hundreds of plasma proteins in large cohort studies. In combination with genotyping, such studies offer the prospect to 1) identify mechanisms involved with regulation of protein expression in plasma, and 2) determine whether the plasma proteins are likely to be causally implicated in disease. We report here the results of genome-wide association (GWA) studies of 83 proteins considered relevant to cardiovascular disease (CVD), measured in 3,394 individuals with multiple CVD risk factors. We identified 79 genome-wide significant (p<5e-8) association signals, 55 of which replicated at P<0.0007 in separate validation studies (n = 2,639 individuals). Using automated text mining, manual curation, and network-based methods incorporating information on expression quantitative trait loci (eQTL), we propose plausible causal mechanisms for 25 trans-acting loci, including a potential post-translational regulation of stem cell factor by matrix metalloproteinase 9 and receptor-ligand pairs such as RANK-RANK ligand. Using public GWA study data, we further evaluate all 79 loci for their causal effect on coronary artery disease, and highlight several potentially causal associations. Overall, a majority of the plasma proteins studied showed evidence of regulation at the genetic level. Our results enable future studies of the causal architecture of human disease, which in turn should aid discovery of new drug targets.
|
|
76 | |||
HGVST4316 |
![]()
Venous thromboembolism is a significant cause of mortality1, yet its genetic determinants are incompletely defined. We performed a discovery genome-wide association study in the Million Veteran Program and UK Biobank, with testing of approximately 13 million DNA sequence variants for association with venous thromboembolism (26,066 cases and 624,053 controls) and meta-analyzed both studies, followed by independent replication with up to 17,672 venous thromboembolism cases and 167,295 controls. We identified 22 previously unknown loci, bringing the total number of venous thromboembolism-associated loci to 33, and subsequently fine-mapped these associations. We developed a genome-wide polygenic risk score for venous thromboembolism that identifies 5% of the population at an equivalent incident venous thromboembolism risk to carriers of the established factor V Leiden p.R506Q and prothrombin G20210A mutations. Our data provide mechanistic insights into the genetic epidemiology of venous thromboembolism and suggest a greater overlap among venous and arterial cardiovascular disease than previously thought.
|
|
18 | |||
HGVST4317 |
![]()
Eosinophilic esophagitis (EoE) is a chronic inflammatory disease of the esophagus triggered by immune hypersensitivity to food. Herein, we tested whether genetic risk factors for known, non-allergic, immune-mediated diseases, particularly those involving autoimmunity, were associated with EoE risk. We used the high-density Immunochip platform, encoding 200,000 genetic variants for major auto-immune disease. Accordingly, 1214 subjects with EoE of European ancestry and 3734 population controls were genotyped and assessed using data directly generated or imputed from the previously published GWAS. We found lack of association of EoE with the genetic variants in the major histocompatibility complex (MHC) class I, II, and III genes and nearly all other loci using a highly powered study design with dense genotyping throughout the locus. Importantly, we identified an EoE risk locus at 16p13 with genome-wide significance (Pcombined=2.05 × 10-9, odds ratio = 0.76-0.81). This region is known to encode for the genes CLEC16A, DEXI, and CIITI, which are expressed in immune cells and esophageal epithelial cells. Suggestive EoE risk were also seen 5q23 (intergenic) and 7p15 (JAZF1). Overall, we have identified an additional EoE risk locus at 16p13 and highlight a shared and unique genetic etiology of EoE with a spectrum of immune-associated diseases.
|
|
4 | |||
HGVST4318 |
![]()
BACKGROUND: Clinical and epidemiologic studies have shown that obesity is associated with asthma and that these associations differ by asthma subtype. Little is known about the shared genetic components between obesity and asthma. OBJECTIVE: We sought to identify shared genetic associations between obesity-related traits and asthma subtypes in adults. METHODS: A cross-trait genome-wide association study (GWAS) was performed using 457,822 subjects of European ancestry from the UK Biobank. Experimental evidence to support the role of genes significantly associated with both obesity-related traits and asthma through a GWAS was sought by using results from obese versus lean mouse RNA sequencing and RT-PCR experiments. RESULTS: We found a substantial positive genetic correlation between body mass index and later-onset asthma defined by asthma age of onset at 16 years or greater (Rg = 0.25, P = 9.56 × 10-22). Mendelian randomization analysis provided strong evidence in support of body mass index causally increasing asthma risk. Cross-trait meta-analysis identified 34 shared loci among 3 obesity-related traits and 2 asthma subtypes. GWAS functional analyses identified potential causal relationships between the shared loci and Genotype-Tissue Expression (GTEx) quantitative trait loci and shared immune- and cell differentiation-related pathways between obesity and asthma. Finally, RNA sequencing data from lungs of obese versus control mice found that 2 genes (acyl-coenzyme A oxidase-like [ACOXL] and myosin light chain 6 [MYL6]) from the cross-trait meta-analysis were differentially expressed, and these findings were validated by using RT-PCR in an independent set of mice. CONCLUSIONS: Our work identified shared genetic components between obesity-related traits and specific asthma subtypes, reinforcing the hypothesis that obesity causally increases the risk of asthma and identifying molecular pathways that might underlie both obesity and asthma.
|
|
4,637 | |||
HGVST4319 |
![]()
Leisure sedentary behaviours are associated with increased risk of cardiovascular disease, but whether this relationship is causal is unknown. The aim of this study is to identify genetic determinants associated with leisure sedentary behaviours and to estimate the potential causal effect on coronary artery disease (CAD). Genome wide association analyses of leisure television watching, leisure computer use and driving behaviour in the UK Biobank identify 145, 36 and 4 genetic loci (P < 1×10-8), respectively. High genetic correlations are observed between sedentary behaviours and neurological traits, including education and body mass index (BMI). Two-sample Mendelian randomization (MR) analysis estimates a causal effect between 1.5 hour increase in television watching and CAD (OR 1.44, 95%CI 1.25-1.66, P = 5.63 × 10-07), that is partially independent of education and BMI in multivariable MR analyses. This study finds independent observational and genetic support for the hypothesis that increased sedentary behaviour by leisure television watching is a risk factor for CAD.
|
|
187 | |||
HGVST4301 |
![]()
Hypertension (HTN) is a significant risk factor for cardiovascular morbidity and mortality. Metabolic abnormalities, including adverse cholesterol and triglycerides (TG) profiles, are frequent comorbid findings with HTN and contribute to cardiovascular disease. Diuretics, which are used to treat HTN and heart failure, have been associated with worsening of fasting lipid concentrations. Genome-wide meta-analyses with 39,710 European-ancestry (EA) individuals and 9925 African-ancestry (AA) individuals were performed to identify genetic variants that modify the effect of loop or thiazide diuretic use on blood lipid concentrations. Both longitudinal and cross sectional data were used to compute cohort-specific interaction results, which were then combined through meta-analysis in each ancestry. These ancestry-specific results were further combined through trans-ancestry meta-analysis. Analysis of EA data identified two genome-wide significant (p < 5 × 10-8) loci with single nucleotide variant (SNV)-loop diuretic interaction on TG concentrations (including COL11A1). Analysis of AA data identified one genome-wide significant locus adjacent to BMP2 with SNV-loop diuretic interaction on TG concentrations. Trans-ancestry analysis strengthened evidence of association for SNV-loop diuretic interaction at two loci (KIAA1217 and BAALC). There were few significant SNV-thiazide diuretic interaction associations on TG concentrations and for either diuretic on cholesterol concentrations. Several promising loci were identified that may implicate biologic pathways that contribute to adverse metabolic side effects from diuretic therapy.
|
|
38 |